38 resultados para Melanchthon, Philipp, 1497-1560.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Quire structure: 9xIV⁷² + (IV–1)⁷⁹. Text in one column, on (mostly) 26–33 lines, not ruled. Catchwords frequently used at the foot of each page to indicate the next word when a sentence continues on the next page. Not foliated. Gothic Cursive in one saec. XVI² hand. The first initial of the book has been touched with what looks like red pencil. This may be a later addition, as also the green tint to the outer edges of the block. Titles and rubrics distinguished, if at all, through layout only. A note fol. [47]v (see also the main text on fol. [31]v) indicates that the text was copied in 1580. The Anti-Papist poem mentions the Jesuit Antonio Possevino, active in Sweden in 1577–1580 (Kiiskinen ed. 2010, 25, 27). The texts appear to be copies of printed works, with the possible exception of the Anti-Papist poem. The publication of Eric Falck’s Een Tröstbook is known, but apparently no printed copies survive; Laurentius Olai Gestricius’ catechism is otherwise unknown. He was a teacher in Gävle from 1557 or 1558, then curate of Västerås from 1561 and of Stockholm in 1562, where he died in 1565 (Kiiskinen ed. 2010, 15, 349; Collijn ed. 1927–1938, vol. 2, 324).
Resumo:
Kirjallisuusarvostelu
Resumo:
Atomic Layer Deposition (ALD) is the technology of choice where very thin and highquality films are required. Its advantage is its ability to deposit dense and pinhole-free coatings in a controllable manner. It has already shown promising results in a range of applications, e.g. diffusion barrier coatings for OLED displays, surface passivation layers for solar panels. Spatial Atomic Layer Deposition (SALD) is a concept that allows a dramatic increase in ALD throughput. During the SALD process, the substrate moves between spatially separated zones filled with the respective precursor gases and reagents in such a manner that the exposure sequence replicates the conventional ALD cycle. The present work describes the development of a high-throughput ALD process. Preliminary process studies were made using an SALD reactor designed especially for this purpose. The basic properties of the ALD process were demonstrated using the wellstudied Al2O3 trimethyl aluminium (TMA)+H2O process. It was shown that the SALD reactor is able to deposit uniform films in true ALD mode. The ALD nature of the process was proven by demonstrating self-limiting behaviour and linear film growth. The process behaviour and properties of synthesized films were in good agreement with previous ALD studies. Issues related to anomalous deposition at low temperatures were addressed as well. The quality of the coatings was demonstrated by applying 20 nm of the Al2O3 on to polymer substrate and measuring its moisture barrier properties. The results of tests confirmed the superior properties of the coatings and their suitability for flexible electronics encapsulation. Successful results led to the development of a pilot scale roll-to-roll coating system. It was demonstrated that the system is able to deposit superior quality films with a water transmission rate of 5x10-6 g/m2day at a web speed of 0.25 m/min. That is equivalent to a production rate of 180 m2/day and can be potentially increased by using wider webs. State-of-art film quality, high production rates and repeatable results make SALD the technology of choice for manufacturing ultra-high barrier coatings for flexible electronics.
Resumo:
Invokaatio: D.D.
Resumo:
Invokaatio: D.D.
Resumo:
Kirjallisuusarvostelu