41 resultados para Interface algorithms
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
Identification of low-dimensional structures and main sources of variation from multivariate data are fundamental tasks in data analysis. Many methods aimed at these tasks involve solution of an optimization problem. Thus, the objective of this thesis is to develop computationally efficient and theoretically justified methods for solving such problems. Most of the thesis is based on a statistical model, where ridges of the density estimated from the data are considered as relevant features. Finding ridges, that are generalized maxima, necessitates development of advanced optimization methods. An efficient and convergent trust region Newton method for projecting a point onto a ridge of the underlying density is developed for this purpose. The method is utilized in a differential equation-based approach for tracing ridges and computing projection coordinates along them. The density estimation is done nonparametrically by using Gaussian kernels. This allows application of ridge-based methods with only mild assumptions on the underlying structure of the data. The statistical model and the ridge finding methods are adapted to two different applications. The first one is extraction of curvilinear structures from noisy data mixed with background clutter. The second one is a novel nonlinear generalization of principal component analysis (PCA) and its extension to time series data. The methods have a wide range of potential applications, where most of the earlier approaches are inadequate. Examples include identification of faults from seismic data and identification of filaments from cosmological data. Applicability of the nonlinear PCA to climate analysis and reconstruction of periodic patterns from noisy time series data are also demonstrated. Other contributions of the thesis include development of an efficient semidefinite optimization method for embedding graphs into the Euclidean space. The method produces structure-preserving embeddings that maximize interpoint distances. It is primarily developed for dimensionality reduction, but has also potential applications in graph theory and various areas of physics, chemistry and engineering. Asymptotic behaviour of ridges and maxima of Gaussian kernel densities is also investigated when the kernel bandwidth approaches infinity. The results are applied to the nonlinear PCA and to finding significant maxima of such densities, which is a typical problem in visual object tracking.
Resumo:
Medium-voltage motor drives extend the power rating of AC motor drives in industrial applications. Multilevel converters are gaining an ever-stronger foothold in this field. This doctoral dissertation introduces a new topology to the family of modular multilevel converters: the modular double-cascade converter. The modularity of the converter is enabled by the application of multiwinding mediumfrequency isolation transformers. Owing to the innovative transformer link, the converter presents many advantageous properties at a concept level: modularity, high input and output power quality, small footprint, and wide variety of applications, among others. Further, the research demonstrates that the transformer link also plays a key role in the disadvantages of the topology. An extensive simulation study on the new converter is performed. The focus of the simulation study is on the development of control algorithms and the feasibility of the topology. In particular, the circuit and control concepts used in the grid interface, the coupling configurations of the load inverter, and the transformer link operation are thoroughly investigated. Experimental results provide proof-of-concept results on the operation principle of the converter. This work concludes a research collaboration project on multilevel converters between LUT and Vacon Plc. The project was active from 2009 until 2014.
Resumo:
Many industrial applications need object recognition and tracking capabilities. The algorithms developed for those purposes are computationally expensive. Yet ,real time performance, high accuracy and small power consumption are essential measures of the system. When all these requirements are combined, hardware acceleration of these algorithms becomes a feasible solution. The purpose of this study is to analyze the current state of these hardware acceleration solutions, which algorithms have been implemented in hardware and what modifications have been done in order to adapt these algorithms to hardware.
Resumo:
Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.
Resumo:
Marketing and finance are both facing challenges in the constantly changing business environment. Finance is challenged to change its role from cost control to value-adding business partner while marketing needs to be able to demonstrate its accountability so how it contributes to firm performance. Finance is the key partner for marketing to prove its impact by helping marketing to measure its actions. By doing so, finance can also emphasize its business partner role. There is not a lot of research conducted of the relationship between marketing and finance departments. The aim of this study is to investigate how the professional differences of marketing and finance and their forms of cooperation affect marketing performance measurement. Literature of marketing and finance disciplines, their cooperation, performance implications of their interface as well as the roles of marketing performance measurement, performance measurement system and measures were reviewed. This research was conducted as a qualitative case study among senior management of marketing and finance in the sporting goods company. The data collected through semi-structured interviews, participant observation and secondary data was described and classified and connections were made. The results of the study show that the nature of marketing and finance disciplines has many effects on their cooperation and performance measurement. Due to the ambiguous nature of marketing, measuring its performance is still seen as a challenge but digitalization is helping the measurement. It was indicated that marketing and finance professionals need to have different skillsets in order to perform their roles effectively and thus cooperation is needed. Marketing performance needs to be measured with both financial and nonfinancial measures. Both marketing and finance interviewees highlighted the importance of marketing measures over financial measures. Measuring marketing performance comprehensively is seen as a challenge since marketing and finance cooperation is still shaped by the cost control and budget management roles, rather than performance measurement. We recognized three constraints affecting this cooperation and performance measurement: people, time and software. If marketing and finance would develop deeper cooperation, they could create comprehensive performance measurement system that improves organizational performance.
Resumo:
The increasing performance of computers has made it possible to solve algorithmically problems for which manual and possibly inaccurate methods have been previously used. Nevertheless, one must still pay attention to the performance of an algorithm if huge datasets are used or if the problem iscomputationally difficult. Two geographic problems are studied in the articles included in this thesis. In the first problem the goal is to determine distances from points, called study points, to shorelines in predefined directions. Together with other in-formation, mainly related to wind, these distances can be used to estimate wave exposure at different areas. In the second problem the input consists of a set of sites where water quality observations have been made and of the results of the measurements at the different sites. The goal is to select a subset of the observational sites in such a manner that water quality is still measured in a sufficient accuracy when monitoring at the other sites is stopped to reduce economic cost. Most of the thesis concentrates on the first problem, known as the fetch length problem. The main challenge is that the two-dimensional map is represented as a set of polygons with millions of vertices in total and the distances may also be computed for millions of study points in several directions. Efficient algorithms are developed for the problem, one of them approximate and the others exact except for rounding errors. The solutions also differ in that three of them are targeted for serial operation or for a small number of CPU cores whereas one, together with its further developments, is suitable also for parallel machines such as GPUs.