59 resultados para Four wave mixing
Resumo:
In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.
Resumo:
Percarboxylic acids are commonly used as disinfection and bleaching agents in textile, paper, and fine chemical industries. All of these applications are based on the oxidative potential of these compounds. In spite of high interest in these chemicals, they are unstable and explosive chemicals, which increase the risk of synthesis processes and transportation. Therefore, the safety criteria in the production process should be considered. Microreactors represent a technology that efficiently utilizes safety advantages resulting from small scale. Therefore, microreactor technology was used in the synthesis of peracetic acid and performic acid. These percarboxylic acids were produced at different temperatures, residence times and catalyst i.e. sulfuric acid concentrations. Both synthesis reactions seemed to be rather fast because with performic acid equilibrium was reached in 4 min at 313 K and with peracetic acid in 10 min at 343 K. In addition, the experimental results were used to study the kinetics of the formation of performic acid and peracetic acid. The advantages of the microreactors in this study were the efficient temperature control even in very exothermic reaction and good mixing due to the short diffusion distances. Therefore, reaction rates were determined with high accuracy. Three different models were considered in order to estimate the kinetic parameters such as reaction rate constants and activation energies. From these three models, the laminar flow model with radial velocity distribution gave most precise parameters. However, sulfuric acid creates many drawbacks in this synthesis process. Therefore, a ´´greener´´ way to use heterogeneous catalyst in the synthesis of performic acid in microreactor was studied. The cation exchange resin, Dowex 50 Wx8, presented very high activity and a long life time in this reaction. In the presence of this catalyst, the equilibrium was reached in 120 second at 313 K which indicates a rather fast reaction. In addition, the safety advantages of microreactors were investigated in this study. Four different conventional methods were used. Production of peracetic acid was used as a test case, and the safety of one conventional batch process was compared with an on-site continuous microprocess. It was found that the conventional methods for the analysis of process safety might not be reliable and adequate for radically novel technology, such as microreactors. This is understandable because the conventional methods are partly based on experience, which is very limited in connection with totally novel technology. Therefore, one checklist-based method was developed to study the safety of intensified and novel processes at the early stage of process development. The checklist was formulated using the concept of layers of protection for a chemical process. The traditional and three intensified processes of hydrogen peroxide synthesis were selected as test cases. With these real cases, it was shown that several positive and negative effects on safety can be detected in process intensification. The general claim that safety is always improved by process intensification was questioned.
Resumo:
US-patentti nro: US 7,908,854 B2
Resumo:
Tässä diplomityössä tutkittiin upotettavien membraanisuodattimien soveltuvuutta sakean hydrolysaattin suodattamiseen ja esisuodatettujen sokereiden väkevöintiä membraanisuodatuksella fermentointia varten. Työssä käytettiin kierrätyskartongista entsyymien avulla valmistettua hydrolysaattia. Sakean hydrolysaatin suodattamiseen käytettiin Kubota Membranesin upposuodatusmoduuleja ja suodatuslaitteistoa. Upposuodatusmoduulien likaantumisen vähentämiseksi suodatuksissa käytettiin ilmasekoitusta ja vastavirta-pesua. Upposuodatusmoduulilla kirkastettua hydrolysaattia väkevöitiin nanosuodatuksella ja tulosta verrattiin painesuodatuksella kirkastetun hydrolysaatin nanosuodatukseen. Konsentrointisuodatusten alussa testattiin neljää nanosuodatuskalvoa hydrolysaatin konsentrointiin. Sokereiden konsentrointiin valittiin Dow FilmTecTM NF-270 nanosuodatuskalvo sen korkean sokeriretention ja hyvän vuon perusteella. Sakean hydrolysaatin esisuodatuksessa ei upotettavien membraanimoduulien ja painesuodatuksen välillä havaittu merkittäviä eroja. Työn perusteella upposuodatusmoduulien käyttö sakean hydrolysaatin suodattamisessa on kuitenkin mahdollista. Tämä mahdollistaisi sokereiden jatkuvatoimisen erottamisen hydrolysaatista. Konsentrointisuodatuksissa molemmilla esisuodatetuilla hydrolysaateilla saavutettiin yli 10 % sokerikonsentraatio ilman suurta sokerihävikkiä. Sokeriretentio pysyi myös konsentraation kasvaessa 80 % yläpuolella.
Resumo:
Preattentive perception of occasional deviating stimuli in the stream of standard stimuli can be recorded with cognitive event-related potential (ERP) mismatch negativity (MMN). The earlier detection of stimuli at the auditory cortex can be examined with N1 and P2 ERPs. The MMN recording does not require co-operation, it correlates with perceptual threshold, and even complex sounds can be used as stimuli. The aim of this study was to examine different aspects that should be considered when measuring discrimination of hearing with ERPs. The MMN was found to be stimulusintensity- dependent. As the intensity of sine wave stimuli was increased from 40 to 80 dB HL, MMN mean amplitudes increased. The effect of stimulus frequency on the MMN was studied so that the pitch difference would be equal in each stimulus block according to the psychophysiological mel scale or the difference limen of frequency (DLF). However, the blocks differed from each other. The contralateral white noise masking (50 dB EML) was found to attenuate the MMN amplitude when the right ear was stimulated. The N1 amplitude was attenuated and, in contrast, P2 amplitude was not affected by contralateral white noise masking. The perception and production of vowels by four postlingually deafened patients with a cochlear implant were studied. The MMN response could be elicited in the patient with the best vowel perception abilities. The results of the studies show that concerning the MMN recordings, the stimulus parameters and recording procedure design have a great influence on the results.
Resumo:
In my doctoral thesis I evaluate strategies designed to cope with the multicultural nature of four European nations: Great Britain, The Netherlands, Sweden, and Denmark. I also analyse and clarify the question of the place of religion in present-day Europe. The empirical material analysed in the study consists of politicians’ statements and policy documents dealing with immigration policy and religious and values education in the four countries. In addition, I analyse statements issued by the Council of Europe regarding religious education, along with all cases relevant to religious education brought before the United Nations Human Rights Committee or the European Court of Human Rights. The theoretical framework is formed by the scholarly debate – among philosophers, sociologists and scholars of religion in education – concerning the question of a just society. Special emphasis is given to philosophical theories that are in favour of granting special group rights to religious minorities in the name of equal treatment. With regard to the question of the appropriate place of religion, I apply Kim Knott’s methodological model for locating religion in secular contexts, and Émile Durkheim’s theory as to the significance of religion and collective sentiments in uniting adherents or members of a group into a single moral community. The study shows that even when the positive side of immigration, as a potential force for the enrichment of the public culture, is acknowledged, there is anxiety as to the successful integration of immigrants. The premises and goals of immigration policies have also been questioned. One central problem is the incommensurability between the values upheld by Western liberal democracies and certain religious traditions, above all those of Islam. Great Britain, The Netherlands, Sweden, and Denmark have tightened control over their citizens’ ethical attitudes and want to regulate these as well. In coping with cultural diversity, the significance of education, especially religious education, plays a significant role; as future citizens, pupils are expected to internalise the society’s core values as well as gaining an understanding of different cultures and ways of life. It is also worth noting that both the Council of Europe and the European Court of Human Rights have recently expressed the view that one important goal of religious education is to enable pupils to be critical and autonomous with regard to different religions and moral positions. The study shows that religion is not seen as purely a personal matter. Religion is closely linked to individual and national identity, and religious traditions thus have a place in the public domain. It should be noted, however, that a religious tradition – more precisely, an interpretation of religious tradition – qualifies as a legitimate partner in the democratic decision-making process only if it shares similar values with Western European nations.