61 resultados para Firing biomass
Resumo:
Kandidaatintyössä esitellään biomassapolttoaineiden polttotekniikat. Lisäksi käydään läpi Suomessa käytettävät biomassapolttoaineet ja niiden käsittelyyn, polttoon ja päästöihin vaikuttavia ominaisuuksia. Työssä keskitytään erityisesti uusien voimalaitosteknologioiden monipolttoainekonseptiin ja monipolttoainebiomassalaitoksiin. Niihin liittyy olennaisesti eri polttoaineiden seospoltto, johon myös työssä tutustutaan. Työn tavoitteena on antaa selkeä kuva biomassalaitosten polttotekniikoista ja polttoaineista. Tavoitteena on lisäksi pohtia monipolttoainekonseptin soveltuvuutta yhdeksi ratkaisuksi tulevaisuuden energiantuotannon haasteisiin.
Resumo:
Maailman energian kulutuksen lisääntymisen ja ilmastonmuutoksen myötä energiantuotannossa joudutaan jatkuvasti sopeutumaan muuttuviin tilanteisiin ja haasteisiin. Polttoteknillisiä haasteita aiheuttavat pelto- ja kierrätyspolttoaineet ovat lisäämässä osuuttaan uusiutuvien polttoaineiden joukossa. Jotta kyseisiä haasteellisia polttoaineita pystytään hyödyntämään, täytyy niiden aiheuttamat ongelmat tuntea ja laitevalmistajien kehittää niiden hyödyntämiseen sopivaa tekniikkaa. Tässä diplomityössä käydään läpi tulevaisuudessa käytettävät polttoaineet, nykyiset päästörajat, kiinteiden polttoaineiden poltto- ja kaasutustekniikat sekä likaantumis-, kuonaantumis- ja korroosiomekanismit voimalaitoskattiloissa. Työssä tutkitaan, onko haasteellisten polttoaineiden käyttöön investoiminen järkevää ja mikä nykypäivän tekniikoista on kannattavin. Myös välitulistuksen, lauhdeperän ja apujäähdyttimen kannattavuuksia vertaillaan sähkön ja lämmön yhteistuotannossa. Tuloksiksi saatiin, että edullisten peltobiomassojen ja kierrätyspolttoaineiden käyttäminen, joko perinteisten polttoaineiden seassa tai pääpolttoaineena, on nykyhinnoilla perinteisiin polttoaineisiin verrattuna kannattavaa. Investoiminen kierrätyspolttoaineiden valmistuslaitteisiin maksimoi kierrätyspolttoaineista saatavaa hyötyä. Välitulistuksen todettiin soveltuvan huonosti vastapaineprosessiin, sillä siitä saatava sähköntuotannon lisäys on hyvin pieni. Lauhdeperän ja apujäähdyttimen vertailuissa huomattiin, että lauhdeperä on kannattava investointi, jos sähkön ja lämmön hintaero pysyy tarpeeksi suurena. Haasteellisilla polttoaineilla pystytään pienentämään kasvihuonepäästöjä ja korvaamaan fossiilisten polttoaineiden käyttöä.
Resumo:
Introduction of second-generation biofuels is an essential factor for meeting the EU’s 2020 targets for renewable energy in the transport sector and enabling the more ambitious targets for 2030. Finland’s forest industry is strongly involved in the development and commercialising of second-generation biofuel production technologies. The goal of this paper is to provide a quantified insight into Finnish prospects for reaching the 2020 national renewable energy targets and concurrently becoming a large-scale producer of forest biomass based second-generation biofuels feeding the increasing demand in European markets. The focus of the paper is on assessing the potential for utilising forest biomass for liquid biofuels up to 2020. In addition, technological issues related to the production of second-generation biofuels were reviewed. Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood based biofuels. In 2020, biofuel production from domestic forest biomass in Finland may reach nearly a million ton (40 PJ). With the existing biofuel production capacity (20 PJ/yr) and national biofuel consumption target (25 PJ) taken into account, the potential net export of biofuels from Finland in 2020 would be 35 PJ, corresponding to 2–3% of European demand. Commercialisation of second-generation biofuel production technologies, high utilisation of the sustainable harvesting potential of Finnish forest biomass, and allocation of a significant proportion of the pulpwood harvesting potential for energy purposes are prerequisites for this scenario. Large-scale import of raw biomass would enable remarkably greater biofuel production than is described in this paper.
Resumo:
The thesis explores global and national-level issues related to the development of markets for biomass for energy. The thesis consists of five separate papers and provides insights on selected issues. The aim of Paper I was to identify methodological and statistical challenges in assessing international solid and liquid biofuels trade and provide an overview of the Finnish situation with respect to the status of international solid and liquid biofuels trade. We found that, for the Finnish case, it is possible to qualify direct and indirect trade volumes of biofuels. The study showed that indirect trade of biofuels has a highly significant role in Finland and may be a significant sector also in global biofuels trade. The purpose of Paper II was to provide a quantified insight into Finnish prospects for meeting the national 2020 renewable energy targets and concurrently becoming a largescale producer of forest-biomass-based second-generation biofuels for feeding increasing demand in European markets. We found that Finland has good opportunities to realise a scenario to meet 2020 renewable energy targets and for large-scale production of wood-based biofuels. The potential net export of transport biofuels from Finland in 2020 would correspond to 2–3% of European demand. Paper III summarises the global status of international solid and liquid biofuels trade as illuminated by several separate sources. International trade of biofuels was estimated at nearly 1 EJ for 2006. Indirect trade of biofuels through trading of industrial roundwood and material by-products comprises the largest proportion of the trading, with a share of about two thirds. The purpose of Paper IV was to outline a comprehensive picture of the coverage of various certification schemes and sustainability principles relating to the entire value-added chain of biomass and bioenergy. Regardless of the intensive work that has been done in the field of sustainability schemes and principles concerning use of biomass for energy, weaknesses still exist. The objective of Paper V was to clarify the alternative scenarios for the international biomass market until 2020 and identify the underlying steps needed toward a wellfunctioning and sustainable market for biomass for energy purposes. An overall conclusion drawn from this analysis concerns the enormous opportunities related to the utilisation of biomass for energy in the coming decades.
Resumo:
The objective of this master's thesis was to develop a process to increase the value of residual fungal biomass as an animal feed. The increase in value is achieved by enriching the protein content in the biomass and potentially isolating other valuable fractions for productisation. In the literature part of this thesis the composition of fungal biomass and fungal cell wall and the factors affecting them during cultivation are presented. The possible processing options are also presented and evaluated. The soy protein and single cell protein product manufacturing processes are used as examples due to the lack of fungal biomass fractionation processes found in published literature. The second part of this thesis was performed by making laboratory experiments on the developed process, which consisted of acid hydrolysis with subsequent ethanol extraction. Chitin was precipitated from the acid hydrolysate filtrate. The experiments were conducted with three different hydrolysis temperatures and three different acid concentrations. The optimal hydrolysis conditions were 60 °C with 10 %-vol acid concentration. Optimal conditions in hydrolysis resulted in 30 % increase in protein content in the final biomass. The conceptual process was modelled to scale of 10 000 t/a biomass feed. The mass and energy balances were based on the laboratory experiments. Economic calculations were performed to determine the maximal capital expense while achieving 10 % internal rate of return for the investment. For the basic case the capital expense threshold was 25.8 M€. Four optional cases and parameter sensitivity analysis were performed to determine the effects of changes in the process. The chitin sales had the greatest impact of the individual parameters.
Biopolttoaineen rinnakkaispolton kannattavuustarkastelu hiilipölypolttokattilassa Martinlaakso 2:ssa
Resumo:
Euroopan unionin asettamat tavoitteet kasvihuonepäästöjen vähennykselle johtavat vih-reämpään teknologiaan. Tämä diplomityö on teoreettinen tutkimus, joka käsittelee biopolt-toaineen rinnakkaispolton kannattavuutta Vantaan Energian Martinlaakso 2:sen hiilipöly-polttokattilassa. Työssä perehdytään viiteen eri biopolttoainevaihtoehtoon, joita tarkastellaan viidessä eri skenaariossa, jotka vastaavat: 10, 20, 30, 40 ja 50 % biopolttoaineen osuutta kattilassa tuo-tetusta energiasta. Skenaarioissa on pohdittu tarvittavia investointikustannuksia ja muutos-töitä hiilipölypolttokattilassa. Tutkimuksessa on huomioitu myös uusi isojen laitosten pääs-töjä koskeva direktiivi, kattilan oletettava käyttöikä sekä biopolttoaineiden tuet. Saaduista arvioista on lopuksi laskettu vuosittainen polttoainekohtainen kustannusarvio ja investoin-nin kannattavuusarvio. Tuloksista voidaan päätellä, että sahanpurun mahdollisimman suuri hyötykäyttö on kannat-tavaa. Mikäli halutaan käyttää suuria määriä biopolttoainetta, (yli 20 % tuotetusta energias-ta) ei sahanpuru ole varteenotettava vaihtoehto huonon saatavuutensa johdosta. Tällöin hakkeen kaasutuslaitos olisi paras ratkaisu, mutta laitoksen kannattavuus riippuu tulevista energiatuista. Ilman energiatukia sahanpurun hyötykäyttö on ainoa kannattava investointi.
Resumo:
The development of new technologies to supplement fossil resources has led to a growing interest in the utilization of alternative routes. Biomass is a rich renewable feedstock for producing fine chemicals, polymers, and a variety of commodities replacing petroleumderived chemicals. Transformation of biomass into diverse valuable chemicals is the key concept of a biorefinery. Catalytic conversion of biomass, which reduces the use of toxic chemicals is one of the important approaches to improve the profitability of biorefineries. Utilization of gold catalysts allows conducting reactions under environmentally-friendly conditions, with a high catalytic activity and selectivity. Gold-catalyzed valorization of several biomass-derived compounds as an alternative approach to the existing technologies was studied in this work. Isomerization of linoleic acid via double bond migration towards biologically active conjugated linoleic acid isomers (CLA) was investigated. The activity and selectivity of various gold catalysts towards cis-9,trans-11-CLA and trans-10,cis-12-CLA were investigated in a semi-batch reactor, showing that the yield of the desired products varied, depending on the catalyst support. The structure sensitivity in the selective oxidation of arabinose was demonstrated using a series of gold catalysts with different Au cluster sizes in a shaker reactor operating in a semibatch mode. The gas-phase selective oxidation of ethanol was studied and the influence of the catalyst support on the catalytic performance was investigated. The selective oxidation of the lignan hydroxymatairesinol (HMR), extracted from the Norway spruce (Picea abies) knots, to the lignan oxomatairesinol (oxoMAT) was extensively investigated. The influence of the reaction conditions and catalyst properties on the yield of oxoMAT was evaluated. In particular, the structure sensitivity of the reaction was demonstrated. The catalyst deactivation and regeneration procedures were studied. The reaction kinetics and mechanism were advanced.
Resumo:
Tässä diplomityössä on tutustuttu Lahti Energia Oy:n Heinolan voimalaitoksen energiantuotantoon. Heinolan voimalaitos on vanha, mutta sen pääkattilana toimiva arinakattila on uusittu 2004. Voimalaitoksen toimintaa halutaan kehittää nykyaikaisemmaksi ja energiatehokkaammaksi. Voimalaitoksella on nykyään kolme asiakasta, joista uusin on liittynyt höyryverkkoon vuonna 2011. Työssä on tutkittu miten voimalaitoksen polttoaineiden käyttö muuttuu uuden asiakkaan myötä. Diplomityön teoriaosassa on keskitytty antamaan tietoa erilaisista polttoaineista sekä arinapolttamisesta polttotekniikkana. Työssä on laskettu voimalaitoksen asiakkaiden käyttämä energiavuositasolla, voimalaitoksen kattilahyötysuhde, prosessihyötysuhde ja niiden avulla laitoksen tarvitsema polttoaine-energia vuodessa. Laskelmat antavat hyvän yleisen kuvan voimalaitoksen käytöstä tällä hetkellä. Käyttöennusteen avulla voidaan arvioida myös laitoksen taloudellista tilaa polttoaineseoksen näkökulmasta.
Resumo:
Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and as biofilms, which are surface-attached bacterial communities embedded in a selfproduced matrix. Most of the antibiotics and the methods for antimicrobial work have been developed for planktonic bacteria. However, the majority of the bacteria in natural habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards conventional antibacterial treatments and thus, there is a great need to meet the demands of effective anti-biofilm therapy. In this thesis project it was attempted to fill the void of anti-biofilm screening methods by developing a platform of assays that evaluate the effect that screened compounds have on the total biomass, viability and the extracellular polysaccharide (EPS) layer of the biofilms. Additionally, a new method for studying biofilms and their interactions with compounds in a continuous flow system was developed using capillary electrochromatography (CEC). The screening platform was utilized with a screening campaign using a small library of cinchona alkaloids. The assays were optimized to be statistically robust enough for screening. The first assay, based on crystal violet staining, measures total biofilm biomass, and it was automated using a liquid handling workstation to decrease the manual workload and signal variation. The second assay, based on resazurin staining, measures viability of the biofilm, and it was thoroughly optimized for the strain used, but was then a very simple and fast method to be used for primary screening. The fluorescent resazurin probe is not toxic to the biofilms. In fact, it was also shown in this project that staining the biofilms with resazurin prior to staining with crystal violet had no effect on the latter and they can be used in sequence on the same screening plate. This sequential addition step was indeed a major improvement on the use of reagents and consumables and also shortened the work time. As a third assay in the platform a wheat germ agglutinin based assay was added to evaluate the effect a compound has on the EPS layer. Using this assay it was found that even if compounds might have clear effect on both biomass and viability, the EPS layer can be left untouched or even be increased. This is a clear implication of the importance of using several assays to be able to find “true hits” in a screening setting. In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona alkaloid library, one compound was found to have antimicrobial effect against planktonic bacteria and prevent biofilm formation at low micromolar concentration. To eradicate biofilms, a higher concentration was needed. It was also shown that the chemical space occupied by the active compound was slightly different than the rest of the cinchona alkaloids as well as the rest of the compounds used for validatory screening during the optimization processes of the separate assays.
Resumo:
Forest biomass represents a geographically distributed feedstock, and geographical location affects the greenhouse gas (GHG) performance of a given forest-bioenergy system in several ways. For example, biomass availability, forest operations, transportation possibilities and the distances involved, biomass end-use possibilities, fossil reference systems, and forest carbon balances all depend to some extent on location. The overall objective of this thesis was to assess the GHG emissions derived from supply and energy-utilization chains of forest biomass in Finland, with a specific focus on the effect of location in relation to forest biomass’s availability and the transportation possibilities. Biomass availability and transportation-network assessments were conducted through utilization of geographical information system methods, and the GHG emissions were assessed by means of lifecycle assessment. The thesis is based on four papers in which forest biomass supply on industrial scale was assessed. The feedstocks assessed in this thesis include harvesting residues, smalldiameter energy wood and stumps. The principal implication of the findings in this thesis is that in Finland, the location and availability of biomass in the proximity of a given energyutilization or energy-conversion plant is not a decisive factor in supply-chain GHG emissions or the possible GHG savings to be achieved with forest-biomass energy use. Therefore, for the greatest GHG reductions with limited forest-biomass resources, energy utilization of forest biomass in Finland should be directed to the locations where most GHG savings are achieved through replacement of fossil fuels. Furthermore, one should prioritize the types of forest biomass with the lowest direct supply-chain GHG emissions (e.g., from transport and comminution) and the lowest indirect ones (in particular, soil carbon-stock losses), regardless of location. In this respect, the best combination is to use harvesting residues in combined heat and power production, replacing peat or coal.
Resumo:
The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.
Resumo:
Lignocellulosic biomasses (e.g., wood and straws) are a potential renewable source for the production of a wide variety of chemicals that could be used to replace those currently produced by petrochemical industry. This would lead to lower greenhouse gas emissions and waste amounts, and to economical savings. There are many possible pathways available for the manufacturing of chemicals from lignocellulosic biomasses. One option is to hydrolyze the cellulose and hemicelluloses of these biomasses into monosaccharides using concentrated sulfuric acid as catalyst. This process is an efficient method for producing monosaccharides which are valuable platforn chemicals. Also other valuable products are formed in the hydrolysis. Unfortunately, the concentrated acid hydrolysis has been deemed unfeasible mainly due to high chemical consumption resulting from the need to remove sulfuric acid from the obtained hydrolysates prior to the downstream processing of the monosaccharides. Traditionally, this has been done by neutralization with lime. This, however, results in high chemical consumption. In addition, the by-products formed in the hydrolysis are not removed and may, thus, hinder the monosaccharide processing. In order to improve the feasibility of the concentrated acid hydrolysis, the chemical consumption should be decreased by recycling of sulfuric acid without neutralization. Furthermore, the monosaccharides and the other products formed in the hydrolysis should be recovered selectively for efficient downstream processing. The selective recovery of the hydrolysis by-products would have additional economical benefits on the process due to their high value. In this work, the use of chromatographic fractionation for the recycling of sulfuric acid and the selective recovery of the main components from the hydrolysates formed in the concentrated acid hydrolysis was investigated. Chromatographic fractionation based on the electrolyte exclusion with gel type strong acid cation exchange resins in acid (H+) form as a stationary phase was studied. A systematic experimental and model-based study regarding the separation task at hand was conducted. The phenomena affecting the separation were determined and their effects elucidated. Mathematical models that take accurately into account these phenomena were derived and used in the simulation of the fractionation process. The main components of the concentrated acid hydrolysates (sulfuric acid, monosaccharides, and acetic acid) were included into this model. Performance of the fractionation process was investigated experimentally and by simulations. Use of different process options was also studied. Sulfuric acid was found to have a significant co-operative effect on the sorption of the other components. This brings about interesting and beneficial effects in the column operations. It is especially beneficial for the separation of sulfuric acid and the monosaccharides. Two different approaches for the modelling of the sorption equilibria were investigated in this work: a simple empirical approach and a thermodynamically consistent approach (the Adsorbed Solution theory). Accurate modelling of the phenomena observed in this work was found to be possible using the simple empirical models. The use of the Adsorbed Solution theory is complicated by the nature of the theory and the complexity of the studied system. In addition to the sorption models, a dynamic column model that takes into account the volume changes of the gel type resins as changing resin bed porosity was also derived. Using the chromatography, all the main components of the hydrolysates can be recovered selectively, and the sulfuric acid consumption of the hydrolysis process can be lowered considerably. Investigation of the performance of the chromatographic fractionation showed that the highest separation efficiency in this separation task is obtained with a gel type resin with a high crosslinking degree (8 wt. %); especially when the hydrolysates contain high amounts of acetic acid. In addition, the concentrated acid hydrolysis should be done with as low sulfuric acid concentration as possible to obtain good separation performance. The column loading and flow rate also have large effects on the performance. In this work, it was demonstrated that when recycling of the fractions obtained in the chromatographic fractionation are recycled to preceding unit operations these unit operations should included in the performance evaluation of the fractionation. When this was done, the separation performance and the feasibility of the concentrated acid hydrolysis process were found to improve considerably. Use of multi-column chromatographic fractionation processes, the Japan Organo process and the Multi-Column Recycling Chromatography process, was also investigated. In the studied case, neither of these processes could compete with the single-column batch process in the productivity. However, due to internal recycling steps, the Multi-Column Recycling Chromatography was found to be superior to the batch process when the product yield and the eluent consumption were taken into account.
Resumo:
Utilization of biomass-based raw materials for the production of chemicals and materials is gaining an increasing interest. Due to the complex nature of biomass, a major challenge in its refining is the development of efficient fractionation and purification processes. Preparative chromatography and membrane filtration are selective, energy-efficient separation techniques which offer a great potential for biorefinery applications. Both of these techniques have been widely studied. On the other hand, only few process concepts that combine the two methods have been presented in the literature. The aim of this thesis was to find the possible synergetic effects provided by combining chromatographic and membrane separations, with a particular interest in biorefinery separation processes. Such knowledge could be used in the development of new, more efficient separation processes for isolating valuable compounds from complex feed solutions that are typical for the biorefinery environment. Separation techniques can be combined in various ways, from simple sequential coupling arrangements to fully-integrated hybrid processes. In this work, different types of combined separation processes as well as conventional chromatographic separation processes were studied for separating small molecules such as sugars and acids from biomass hydrolysates and spent pulping liquors. The combination of chromatographic and membrane separation was found capable of recovering high-purity products from complex solutions. For example, hydroxy acids of black liquor were successfully recovered using a novel multistep process based on ultrafiltration and size-exclusion chromatography. Unlike any other separation process earlier suggested for this challenging separation task, the new process concept does not require acidification pretreatment, and thus it could be more readily integrated into a pulp-mill biorefinery. In addition to the combined separation processes, steady-state recycling chromatography, which has earlier been studied for small-scale separations of high-value compounds only, was found a promising process alternative for biorefinery applications. In comparison to conventional batch chromatography, recycling chromatography provided higher product purity, increased the production rate and reduced the chemical consumption in the separation of monosaccharides from biomass hydrolysates. In addition, a significant further improvement in the process performance was obtained when a membrane filtration unit was integrated with recycling chromatography. In the light of the results of this work, separation processes based on combining membrane and chromatographic separations could be effectively applied for different biorefinery applications. The main challenge remains in the development of inexpensive separation materials which are resistant towards harsh process conditions and fouling.
Resumo:
Tämän kandidaatintyön tarkoituksena oli tutkia märkähapetusprosessia jätevesien käsittely-menetelmänä ja mahdollisena menetelmänä kemikaalien tuottamiseksi jätevesistä. Erityishuomio on kiinnitetty paperiteollisuudessa syntyviin jätevesiin. Teoriaosassa käsitellään vesikiertoja paperitehtaassa, paperitehtaalla syntyvän jäteveden ominaisuuksia sekä itse märkähapetusprosessia. Märkähapetusprosessissa perehdytään tavalliseen happea käyttävään märkähapetukseen sekä vetyperoksidia käyttävään menetelmään sekä näissä prosesseissa syntyviin väli- ja lopputuotteisiin. Märkähapetus (WO) on terminen hapetusmenetelmä, jolla voidaan käsitellä jätevesiä, jotka ovat liian konsentroituja biologisiin käsittelyihin tai jotka ovat huonosti biohajoavia. Märkähapetuksen tarkoituksena on parantaa molekulaarisen hapen ja orgaanisen aineen välistä kontaktia, jolloin orgaaninen aines pilkkoutuu muodostaen pääasiassa karboksyylihappoja, aldehydejä, hiilidioksidia ja vettä. Märkähapetuksessa hapettavana kaasuna voidaan käyttää joko puhdasta happea tai ilmaa. Vetyperoksidia käyttävässä märkähapetuksessa (WPO) hapettava kaasu on korvattu nestemäisellä vetyperoksidilla. Kokeellisessa osassa tutkittiin orgaanisen aineksen hapetusta käyttäen Fentonin reagenssia, jolloin katalyyttina reaktiossa toimii rautaionit (Fe2+ ja Fe3+) ja hapettimena vetyperoksidi. Hapetettavana jätevetenä käytettiin paperitehtaan hiomolta saatua kiertovettä, TMP-vettä. Hapetuskokeita tehtiin eri vetyperoksidin annoksilla ja katalyytin määrillä eri lämpötiloissa. Hapetuksen jälkeen näytteistä mitattiin kemiallinen hapenkulutus (COD), orgaanisen hiilen kokonaismäärä (TOC) sekä pH. Lisäksi näytteistä määritettiin nestekromatografilla (HPLC) tyypillisten välituotteiden, kuten oksaalihapon, muurahaishapon ja etikkahapon, määrät. Tehdyissä kokeissa COD-arvoja saatiin pienennettyä 50-88 % siten, että suodatetuissa näytteissä muutos oli suurempi kuin suodattamattomissa näytteissä. Lisäksi TOC-arvot laskivat 28-58 %. Tehdyissä kokeissa saatiin myös tuotettua välituotteina karboksyylihappoja, joista etikkahappoa ja oksaalihappoa tuotettiin suurimmat määrät. Myös muurahaishappoa ja meripihkahappoa saatiin tuotettua.