37 resultados para FINITE TOTAL CURVATURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present Master’s thesis presents theoretical description of the extraodinary behavior of the confined Indium nanoparticles. Superconducting properties of nanoparticles and nanocomposites are extensively reviewed. Special attention has been paid to phase fluctuation, shell and disordered effects. The experimental data has been obtained and provided by Dmitry Shamshur from Ioffe Physical Technical Institute. The investigated material represents a highly ordered system of silicate spheres filled with indium metal, where the In nanoparticles are interconnected between each other. Bulk indium is a superconductor with crititcal superconducting temperature Tc0 = 3:41 K. But indium nanoparticles exhibit different behavior, the critical temperature rise by approximately 20% up to 4.15 K. As well as transition of the indium particles to type-II superconductivity with high critical magnetic fields. Such diversity is explained by finite size effects which originate from nanosize of the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Target of this study was to develop a total cost calculation model to compare all costs from manufacturing and logistics from own factories or from partner factories to global distribution centers in a case company. Especially the total cost calculation model was needed to simulate an own factory utilization effect in the total cost calculation context. This study consist of the theoretical literature review and the empirical case study. This study was completed using the constructive research approach. The result of this study was a new total cost calculation model. The new total cost calculation model includes not only all the costs caused by manufacturing and logistics, but also the relevant capital costs. Using the new total cost calculation model, case company is able to complete the total cost calculations taking into account the own factory utilization effect in different volume situations and volume shares between an own factory and a partner factory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hip resurfacing arthroplasty (HRA) and large head metal-on-metal total arthroplasty (LDH MoM THA) gained popularity during the last decade. Adverse reaction to metal debris (ARMD) is a unique complication of metal bearings. ARMD is a complex reaction caused by metal debris from metal-on- metal bearing surfaces and from trunnion corrosion of modular junctions. We analyzed survivorship of 8059 LDH MoM THAs based on data of the Finnish Arthroplasty Register. We found relatively high short-term survivorship for some LDH MoM THAs, but there were remarkable differences between the devices studied. After some alarming reports of failing MoM THAs, we studied the first 80 patients who had received a ReCap-M2a-Magnum implant at our institution and evaluated the prevalence of ARMD. We found a high prevalence of pseudotumors, and, because of this, we discontinued the use of MoM bearings and followed up all patients with a MoM THA. Bone loss due infection, osteolysis or fracture poses a great challenge for reconstructive and fracture surgery. Onlay allografting for both revision and fracture surgery provides mechanical stability and increases bone stock. Bone loss and implant stability must be assessed preoperatively and adequately classified; this provides guidelines for the operative treatment of periprosthetic fractures and revision THA. In our studies on structural allografts union rates were high, although the rates of infections and dislocations were marked. In summary, early results of the use of LDH MoM devices were encouraging. However, the survival of the LDH MoMs varied. The prevalence of adverse reaction to metal debris was high after application of the ReCap-Magnum THA. New implants should be introduced carefully and under close surveillance by University clinics and arthroplasty registers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subshifts are sets of configurations over an infinite grid defined by a set of forbidden patterns. In this thesis, we study two-dimensional subshifts offinite type (2D SFTs), where the underlying grid is Z2 and the set of for-bidden patterns is finite. We are mainly interested in the interplay between the computational power of 2D SFTs and their geometry, examined through the concept of expansive subdynamics. 2D SFTs with expansive directions form an interesting and natural class of subshifts that lie between dimensions 1 and 2. An SFT that has only one non-expansive direction is called extremely expansive. We prove that in many aspects, extremely expansive 2D SFTs display the totality of behaviours of general 2D SFTs. For example, we construct an aperiodic extremely expansive 2D SFT and we prove that the emptiness problem is undecidable even when restricted to the class of extremely expansive 2D SFTs. We also prove that every Medvedev class contains an extremely expansive 2D SFT and we provide a characterization of the sets of directions that can be the set of non-expansive directions of a 2D SFT. Finally, we prove that for every computable sequence of 2D SFTs with an expansive direction, there exists a universal object that simulates all of the elements of the sequence. We use the so called hierarchical, self-simulating or fixed-point method for constructing 2D SFTs which has been previously used by Ga´cs, Durand, Romashchenko and Shen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, finite element analyses and experimental tests are carried out in order to investigate the effect of loading type and symmetry on the fatigue strength of three different non-load carrying welded joints. The current codes and recommendations do not give explicit instructions how to consider degree of bending in loading and the effect of symmetry in the fatigue assessment of welded joints. The fatigue assessment is done by using effective notch stress method and linear elastic fracture mechanics. Transverse attachment and cover plate joints are analyzed by using 2D plane strain element models in FEMAP/NxNastran and Franc2D software and longitudinal gusset case is analyzed by using solid element models in Abaqus and Abaqus/XFEM software. By means of the evaluated effective notch stress range and stress intensity factor range, the nominal fatigue strength is assessed. Experimental tests consist of the fatigue tests of transverse attachment joints with total amount of 12 specimens. In the tests, the effect of both loading type and symmetry on the fatigue strength is studied. Finite element analyses showed that the fatigue strength of asymmetric joint is higher in tensile loading and the fatigue strength of symmetric joint is higher in bending loading in terms of nominal and hot spot stress methods. Linear elastic fracture mechanics indicated that bending reduces stress intensity factors when the crack size is relatively large since the normal stress decreases at the crack tip due to the stress gradient. Under tensile loading, experimental tests corresponded with finite element analyzes. Still, the fatigue tested joints subjected to bending showed the bending increased the fatigue strength of non-load carrying welded joints and the fatigue test results did not fully agree with the fatigue assessment. According to the results, it can be concluded that in tensile loading, the symmetry of joint distinctly affects on the fatigue strength. The fatigue life assessment of bending loaded joints is challenging since it depends on whether the crack initiation or propagation is predominant.