68 resultados para Dynamic susceptibility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to create and evaluate an intervention programme for Tanzanian children from a low-income area who are at risk of reading and writing difficulties. The learning difficulties, including reading and writing difficulties, are likely to be behind many of the common school problems in Tanzania, but they are not well understood, and research is needed. The design of the study included an identification and intervention phase with follow-up. A group based dynamic assessment approach was used in identifying children at risk of difficulties in reading and writing. The same approach was used in the intervention. The study was a randomized experiment with one experimental and two control groups. For the experimental and the control groups, a total of 96 (46 girls and 50 boys) children from grade one were screened out of 301 children from two schools in a low income urban area of Dar-es-Salaam. One third of the children, the experimental group, participated in an intensive training programme in literacy skills for five weeks, six hours per week, aimed at promoting reading and writing ability, while the children in the control groups had a mathematics and art programme. Follow-up was performed five months after the intervention. The intervention programme and the tests were based on the Zambian BASAT (Basic Skill Assessment Tool, Ketonen & Mulenga, 2003), but the content was drawn from the Kiswahili school curriculum in Tanzania. The main components of the training and testing programme were the same, only differing in content. The training process was different from traditional training in Tanzanian schools in that principles of teaching and training in dynamic assessment were followed. Feedback was the cornerstone of the training and the focus was on supporting the children in exploring knowledge and strategies in performing the tasks. The experimental group improved significantly more (p = .000) than the control groups during the intervention from pre-test to follow-up (repeated measures ANOVA). No differences between the control groups were noticed. The effect was significant on all the measures: phonological awareness, reading skills, writing skills and overall literacy skills. A transfer effect on school marks in Kiswahili and English was found. Following a discussion of the results, suggestions for further research and adaptation of the programme are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, general approach is devised to model electrolyte sorption from aqueous solutions on solid materials. Electrolyte sorption is often considered as unwanted phenomenon in ion exchange and its potential as an independent separation method has not been fully explored. The solid sorbents studied here are porous and non-porous organic or inorganic materials with or without specific functional groups attached on the solid matrix. Accordingly, the sorption mechanisms include physical adsorption, chemisorption on the functional groups and partition restricted by electrostatic or steric factors. The model is tested in four Cases Studies dealing with chelating adsorption of transition metal mixtures, physical adsorption of metal and metalloid complexes from chloride solutions, size exclusion of electrolytes in nano-porous materials and electrolyte exclusion of electrolyte/non-electrolyte mixtures. The model parameters are estimated using experimental data from equilibrium and batch kinetic measurements, and they are used to simulate actual single-column fixed-bed separations. Phase equilibrium between the solution and solid phases is described using thermodynamic Gibbs-Donnan model and various adsorption models depending on the properties of the sorbent. The 3-dimensional thermodynamic approach is used for volume sorption in gel-type ion exchangers and in nano-porous adsorbents, and satisfactory correlation is obtained provided that both mixing and exclusion effects are adequately taken into account. 2-Dimensional surface adsorption models are successfully applied to physical adsorption of complex species and to chelating adsorption of transition metal salts. In the latter case, comparison is also made with complex formation models. Results of the mass transport studies show that uptake rates even in a competitive high-affinity system can be described by constant diffusion coefficients, when the adsorbent structure and the phase equilibrium conditions are adequately included in the model. Furthermore, a simplified solution based on the linear driving force approximation and the shrinking-core model is developed for very non-linear adsorption systems. In each Case Study, the actual separation is carried out batch-wise in fixed-beds and the experimental data are simulated/correlated using the parameters derived from equilibrium and kinetic data. Good agreement between the calculated and experimental break-through curves is usually obtained indicating that the proposed approach is useful in systems, which at first sight are very different. For example, the important improvement in copper separation from concentrated zinc sulfate solution at elevated temperatures can be correctly predicted by the model. In some cases, however, re-adjustment of model parameters is needed due to e.g. high solution viscosity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates the effectiveness of time-varying hedging during the financial crisis of 2007 and the European Debt Crisis of 2010. In addition, the seven test economies are part of the European Monetary Union and these countries are in different economical states. Time-varying hedge ratio was constructed using conditional variances and correlations, which were created by using multivariate GARCH models. Here we have used three different underlying portfolios: national equity markets, government bond markets and the combination of these two. These underlying portfolios were hedged by using credit default swaps. Empirical part includes the in-sample and out-of-sample analysis, which are constructed by using constant and dynamic models. Moreover, almost in every case dynamic models outperform the constant ones in the determination of the hedge ratio. We could not find any statistically significant evidence to support the use of asymmetric dynamic conditional correlation model. In addition, our findings are in line with prior literature and support the use of time-varying hedge ratio. Finally, we found that in some cases credit default swaps are not suitable instruments for hedging and they act more as a speculative instrument.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This master’s thesis aims to examine the relationship between dynamic capabilities and operational-level innovations. In addition, measures for the concept of dynamic capabilities are developed. The study was executed in the magazine publishing industry which is considered favourable for examining dynamic capabilities, since the sector is characterized by rapid change. As a basis for the study and the measure development, a literary review was conducted. Data for the empirical section was gathered by a survey targeted to chief-editors of Finnish consumer magazines. The relationship between dynamic capabilities and innovation was examined by multiple linear regression. The results indicate that dynamic capabilities have effect on the emergence of radical innovations. Environmental dynamism’s effect on radical innovations was not detected. Also, dynamic capabilities’ effect on innovation was not greater in turbulent operating environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria can exist as planktonic, the lifestyle in which single cells exist in suspension, and as biofilms, which are surface-attached bacterial communities embedded in a selfproduced matrix. Most of the antibiotics and the methods for antimicrobial work have been developed for planktonic bacteria. However, the majority of the bacteria in natural habitats live as biofilms. Biofilms develop dauntingly fast high resistance towards conventional antibacterial treatments and thus, there is a great need to meet the demands of effective anti-biofilm therapy. In this thesis project it was attempted to fill the void of anti-biofilm screening methods by developing a platform of assays that evaluate the effect that screened compounds have on the total biomass, viability and the extracellular polysaccharide (EPS) layer of the biofilms. Additionally, a new method for studying biofilms and their interactions with compounds in a continuous flow system was developed using capillary electrochromatography (CEC). The screening platform was utilized with a screening campaign using a small library of cinchona alkaloids. The assays were optimized to be statistically robust enough for screening. The first assay, based on crystal violet staining, measures total biofilm biomass, and it was automated using a liquid handling workstation to decrease the manual workload and signal variation. The second assay, based on resazurin staining, measures viability of the biofilm, and it was thoroughly optimized for the strain used, but was then a very simple and fast method to be used for primary screening. The fluorescent resazurin probe is not toxic to the biofilms. In fact, it was also shown in this project that staining the biofilms with resazurin prior to staining with crystal violet had no effect on the latter and they can be used in sequence on the same screening plate. This sequential addition step was indeed a major improvement on the use of reagents and consumables and also shortened the work time. As a third assay in the platform a wheat germ agglutinin based assay was added to evaluate the effect a compound has on the EPS layer. Using this assay it was found that even if compounds might have clear effect on both biomass and viability, the EPS layer can be left untouched or even be increased. This is a clear implication of the importance of using several assays to be able to find “true hits” in a screening setting. In the pilot study of screening for antimicrobial and anti-biofilm effects using a cinchona alkaloid library, one compound was found to have antimicrobial effect against planktonic bacteria and prevent biofilm formation at low micromolar concentration. To eradicate biofilms, a higher concentration was needed. It was also shown that the chemical space occupied by the active compound was slightly different than the rest of the cinchona alkaloids as well as the rest of the compounds used for validatory screening during the optimization processes of the separate assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Family businesses are among the longest-lived most prevalent institutions in the world and they are an important source of economic development and growth. Ownership is a key to the business life of the firm and also one main key in family business definition. There is only a little portfolio entrepreneurship or portfolio business research within family business context. The absence of empirical evidence on the long-term relationship between family ownership and portfolio development presents an important gap in the family business literature. This study deals with the family business ownership changes and the development of portfolios in the family business and it is positioned in to the conversation of family business, growth, ownership, management and strategy. This study contributes and expands the existing body of theory on family business and ownership. From the theoretical point of view this study combines insights from the fields of portfolio entrepreneurship, ownership, and family business and integrate them. This crossfertilization produces interesting empirical and theoretical findings that can constitute a basis for solid contributions to the understanding of ownership dynamics and portfolio entrepreneurship in family firms. The research strategy chosen for this study represents longitudinal, qualitative, hermeneutic, and deductive approaches.The empirical part of study is using a case study approach with embedded design, that is, multiple levels of analysis within a single study. The study consists of two cases and it begins with a pilot case which will form a preunderstanding on the phenomenon. Pilot case develops the methodology approach to build in the main case and the main case will deepen the understanding of the phenomenon. This study develops and tests a research method of family business portfolio development focusing on investigating how ownership changes are influencing to the family business structures over time. This study reveals the linkages between dimensions of ownership and how they give rise to portfolio business development within the context of the family business. The empirical results of the study suggest that family business ownership is dynamic and owners are using ownership as a tool for creating business portfolios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preparation of optically active compounds is of high importance in modern medicinal chemistry. Despite recent advances in the field of asymmetric synthesis, resolution of racemates still remains the most utilized way for preparation of single enantiomers in industrial scale due to its cost-efficiency and simplicity. Enzymatic kinetic resolution (KR) of racemates is a classical method for separation of enantiomers. One of its drawbacks is the limitation of target enantiomer yield to 50%. Dynamic Kinetic Resolution (DKR) allows to reach yields up to 100% by in situ racemization of the less reactive enantiomer. In the first part of this thesis, a number of half-sandwich ruthenium complexes were prepared and evaluated as catalysts for racemization of optically active secondary alcohols. A leading catalyst, Bn5CpRu(CO)2Cl, was identified. The catalyst discovered was extensively characterized by its application for DKR of a broad range of secondary alcohols in a wide range of reaction loadings (1 mmol – 1 mol). Cost-efficient chromatography-free procedure for preparation of this catalyst was developed. Further, detailed kinetic and mechanistic studies of the racemization reactions were performed. Comparison of racemization rates in the presence of Bn5CpRu(CO)2Cl and Ph5CpRu(CO)2Cl catalysts reveals that the performance of the catalytic system can be adjusted by matching of the electronic properties of the catalysts and the substrates. Moreover, dependence of the rate-limiting step from the electronic properties of the reagents was observed. Important conclusions about reaction mechanism were made. Finally, an alternative approach to DKR of amines based on space separated vessels was addressed. This procedure allows the combination of thermolabile enzyme with racemization catalysts active only at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Positron Emission Tomography (PET) using 18F-FDG is playing a vital role in the diagnosis and treatment planning of cancer. However, the most widely used radiotracer, 18F-FDG, is not specific for tumours and can also accumulate in inflammatory lesions as well as normal physiologically active tissues making diagnosis and treatment planning complicated for the physicians. Malignant, inflammatory and normal tissues are known to have different pathways for glucose metabolism which could possibly be evident from different characteristics of the time activity curves from a dynamic PET acquisition protocol. Therefore, we aimed to develop new image analysis methods, for PET scans of the head and neck region, which could differentiate between inflammation, tumour and normal tissues using this functional information within these radiotracer uptake areas. We developed different dynamic features from the time activity curves of voxels in these areas and compared them with the widely used static parameter, SUV, using Gaussian Mixture Model algorithm as well as K-means algorithm in order to assess their effectiveness in discriminating metabolically different areas. Moreover, we also correlated dynamic features with other clinical metrics obtained independently of PET imaging. The results show that some of the developed features can prove to be useful in differentiating tumour tissues from inflammatory regions and some dynamic features also provide positive correlations with clinical metrics. If these proposed methods are further explored then they can prove to be useful in reducing false positive tumour detections and developing real world applications for tumour diagnosis and contouring.