36 resultados para Dynamic information Systems
Resumo:
Diplomityön tavoitteena on esitellä sähkökaupan ja erityisesti sähköyhtiöiden kokemia sähkönmyynnin riskejä sekä kuvata sähkönmyyntiin liittyvää riskienhallinnan problematiikkaa. Tarkastelun näkökulmana on tietojärjestelmien ja saatavissa olevan tiedon hyödyntäminen energiayhtiöiden riskienhallinnassa. Toinen päätavoitteista on tutkia, kuinka saatavilla olevaa tiedon hyödyntämistä voidaan kehittää sähkönmyynnin hinnoittelussa sekä suojausten suunnittelussa. Työ toteutettiin työskentelemällä asiantuntijana energia-alaan keskittyneessä ohjelmistoyrityksessä sekä haastattelemalla yhdeksän suomalaisen sähkönmyyntiyhtiön henkilöitä riskienhallinnan haasteiden sekä tietojärjestelmien näkökulmasta. Saatavilla olevien tietojen nykyistä parempi hyödyntäminen ja automatisointi voivat auttaa pienentämään yhtiöiden riskitasoa ja parantaa menestymisen edellytyksiä sähkönmyynnin vähittäismarkkinoilla. Lisäksi kulloiseenkin markkinatilanteeseen sopivat sähkön hankintahinnan suojausstrategiat sekä monipuoliset dynaamiset hinnoittelumallit auttavat pienentämään yhtiön kokemia riskejä tai niiden vaikutuksia. Näiden hyödyntäminen vaatii laajaa ymmärrystä sähkö- ja johdannaismarkkinoiden toiminnasta sekä usein myös nykyisten tietojärjestelmien kehittämistä. Tulevaisuudessa yhä yleistyvä hajautettu tuotanto sekä kysynnän jousto asettavat tietojärjestelmille uusia vaatimuksia, jotka toteutuessaan mahdollistavat uudenlaisten palveluiden käyttöönoton sekä voivat tuoda tilaa myös alan uusille toimijoille. Työssä käsitellään energiayhtiöiden kokemia riskejä sähkönmyynnin näkökulmasta, esitellään alan yleisimmät riskit sekä keinot ja työkalut niiltä suojautumiseen. Työn lopuksi tarkastellaan sähkönmyynnin ja –hankinnan oleellisimpia prosesseja riskienhallinnan kehittämisen näkökulmasta.
Datenherrschaft – an Ethically Justified Solution to the Problem of Ownership of Patient Information
Resumo:
Patient information systems are crucial components for the modern healthcare and medicine. It is obvious that without them the healthcare cannot function properly – one can try to imagine how brain surgery could be done without using information systems to gather and show information needed for an operation. Thus, it can be stated that digital information is irremovable part of modern healthcare. However, the legal ownership of patient information lacks a coherent and justified basis. The whole issue itself is actually bypassed by controlling pa- tient information with different laws and regulations how patient information can be used and by whom. Nonetheless, the issue itself – who owns the patient in- formation – is commonly missed or bypassed. This dissertation show the problems if the legislation of patient information ownership is not clear. Without clear legislation, the outcome can be unexpected like it seems to be in Finland, Sweden and United Kingdom: the lack of clear regulation has come up with unwanted consequences because of problematic Eu- ropean Union database directive implementation in those countries. The legal ownership is actually granted to the creators of databases which contains the pa- tient information, and this is not a desirable situation. In healthcare and medicine, we are dealing with issues such as life, health and information which are very sensitive and in many cases very personal. Thus, this dissertation leans on four philosophical theories form Locke, Kant, Heidegger and Rawls to have an ethically justified basis for regulating the patient infor- mation in a proper way. Because of the problems of property and ownership in the context of information, a new concept is needed and presented to replace the concept of owning, that concept being Datenherrschaft (eng. mastery over in- formation). Datenherrschaft seems to be suitable for regulating patient infor- mation because its core is the protection of one’s right over information and this aligns with the work of the philosophers whose theories are used in the work. The philosophical argumentation of this study shows that Datenherrschaft granted to the patients is ethically acceptable. It supports the view that patient should be controlling the patient information about themselves unless there are such specific circumstance that justifies the authorities to use patient information to protect other people’s basic rights. Thus, if the patients would be legally grant- ed Datenherrschaft over patient information we would endorse patients as indi- viduals who have their own and personal experience of their own life and have a strong stance against any unjustified paternalism in healthcare. Keywords: patient information, ownership, Datenherrschaft, ethics, Locke, Kant, Heidegger, Rawls
Resumo:
Product Data Management (PDM) systems have been utilized within companies since the 1980s. Mainly the PDM systems have been used by large companies. This thesis presents the premise that small and medium-sized companies can also benefit from utilizing the Product Data Management systems. Furthermore, the starting point for the thesis is that the existing PDM systems are either too expensive or do not properly respond to the requirements SMEs have. The aim of this study is to investigate what kinds of requirements and special features SMEs, operating in Finnish manufacturing industry, have towards Product Data Management. Additionally, the target is to create a conceptual model that could fulfill the specified requirements. The research has been carried out as a qualitative case study, in which the research data was collected from ten Finnish companies operating in manufacturing industry. The research data is formed by interviewing key personnel from the case companies. After this, the data formed from the interviews has been processed to comprise a generic set of information system requirements and the information system concept supporting it. The commercialization of the concept is studied in the thesis from the perspective of system development. The aim was to create a conceptual model, which would be economically feasible for both, a company utilizing the system and for a company developing it. For this reason, the thesis has sought ways to scale the system development effort for multiple simultaneous cases. The main methods found were to utilize platform-based thinking and a way to generalize the system requirements, or in other words abstracting the requirements of an information system. The results of the research highlight the special features Finnish manufacturing SMEs have towards PDM. The most significant of the special features is the usage of project model to manage the order-to-delivery –process. This differs significantly from the traditional concepts of Product Data Management presented in the literature. Furthermore, as a research result, this thesis presents a conceptual model of a PDM system, which would be viable for the case companies interviewed during the research. As a by-product, this research presents a synthesized model, found from the literature, to abstract information system requirements. In addition to this, the strategic importance and categorization of information systems within companies has been discussed from the perspective of information system customizations.
Resumo:
The growth of the companies working in the Logistics area has raised the need for using several Logistics systems that can meet the increased requirements in business processes. Different companies may use one or more Logistics systems internally and may use different Logistics systems that other collaborated companies use. Furthermore, these Logistics systems are required to communicate with each other in order to process and manage the flow of the information. Integrating the Logistics systems is beneficial as it allows interaction between the whole systems and services instead of the need to replace them. In addition, it improves the efficiency, lowers the possible errors in the supply chain, reduces the costs and facilitates the access of suppliers and customers to the information. This in turn leads to better relationships with both suppliers and customers. Usually local integration of several Logistics systems is not very difficult, especially that mostly the companies buy their system from a single source. However, the case is different for integrating several logistics systems across the companies’ borders. In this case, there are many factors play major roles in limiting the integration, such as using different systems and different output. This thesis highlights these factors and challenges, demonstrates some solutions for the logistics inter-organizational integration from the perspective of information systems and presents some approaches for integrating these systems. There are many studies about the integration inside a company but fewer studies focused about the technical side and the information systems integration across company’s borders or what is called inter-organizational integration. This study is a literature review that aims at illustrating the challenges, the requirements and some approaches in inter-organizational logistics information systems integration of logistics systems across the companies’ borders.
Resumo:
The issue of selecting an appropriate healthcare information system is a very essential one. If implemented healthcare information system doesn’t fit particular healthcare institution, for example there are unnecessary functions; healthcare institution wastes its resources and its efficiency decreases. The purpose of this research is to develop a healthcare information system selection model to assist the decision-making process of choosing healthcare information system. Appropriate healthcare information system helps healthcare institutions to become more effective and efficient and keep up with the times. The research is based on comparison analysis of 50 healthcare information systems and 6 interviews with experts from St-Petersburg healthcare institutions that already have experience in healthcare information system utilization. 13 characteristics of healthcare information systems: 5 key and 7 additional features are identified and considered in the selection model development. Variables are used in the selection model in order to narrow the decision algorithm and to avoid duplication of brunches. The questions in the healthcare information systems selection model are designed to be easy-to-understand for common a decision-maker in healthcare institution without permanent establishment.
Resumo:
Internet of Things or IoT is revolutionizing the world we are living in, similarly the way Internet and the web did few decades ago. It is changing how we interact with the things surrounding us. Electronic health and remote patient monitoring are the ways of utilizing these technological improvements towards the healthcare. There are many applications of IoT in eHealth such as, it will open the gate to provide healthcare to the remote areas of the world, where healthcare through traditional hospital systems cannot be provided. To connect these new eHealth IoT systems with the existing healthcare information systems, we can use the existing interoperability standards commonly used in healthcare information systems. In this thesis we implemented an eHealth IoT system based on Health Level 7 interoperability standard for continuous data transmission. There is not much previous work done in implementing the HL7 for continuous sensor data transmission. Some of the previous work was limited to sensors which are not continuous in nature and some of it is only theatrical architecture. This thesis aims to prove that it is possible to implement an eHealth IoT system by using sensors which require continues data transmission, such as respiratory sensors, and to connect it with the existing eHealth information system semantically by using HL7 interoperability standard. This system will be beneficial in implementing eHealth IoT systems for those patients, who requires continuous healthcare personal monitoring. This includes elderly people and patients, whose health need to be monitored constantly. To implement the architecture, HL7 v2.5 is selected due to its ease of implementation and low size. We selected some open source technologies because of their open licenses and large developer community. We will also review the most efficient technology available in every layer of eHealth IoT system and will propose an efficient system.