79 resultados para Dynamic Adjustment
Resumo:
Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.
Resumo:
Cellen har ett s.k. cytoskelett som bl.a. ger stadga åt cellen och deltar i dess form- och rörelsefunktioner. Intermediärfilamenten är en viktig del av cytoskelettet och de har länge varit kända för sina väsentliga roller i att upprätthålla den cellulära organisationen och vävnadernas integritet. På senare år har man insett att intermediärfilamenten har en större funktionell mångsidighet än man tidigare tänkts sig, i och med att en rad olika studier har visat betydelsen av intermediärfilamenten vid olika signaleringprocesser. Dessa proteinnätverk samverkar nämligen med kinaser och andra viktiga signalfaktorer och deltar därmed i cellens signaleringmaskineri. Intermediärfilamentproteinet nestin används ofta som en markör för stamceller men dess fysiologiska funktioner är i stort sett okända. Interaktion mellan nestin och ett signalkomplex bestående av cyklin-beroende kinas 5 (eng. Cyclin-dependent kinase, Cdk5) och dess aktivatorprotein p35 upptäcktes i vårt laboratorium före denna avhandling påbörjades. Därför var syftet med min avhandling att undersöka den funktionella betydelsen av nestin i regleringen av Cdk5/p35 komplexet. Cdk5 är ett multifunktionellt kinas som reglerar både utvecklingen och stressreaktioner i nerver och muskler. Vi visade att nestin skyddar neuronala stamceller under oxidativ stress genom dess förmåga att hämma Cdk5s skadliga aktivitet. Genom att förankra Cdk5/p35 komplexet, reglerar nestin den subcellulära lokaliseringen av Cdk5/p35 och minskar klyvningen av p35 till den mer stabila aktivatorn p25. Vi demonstrerade också aktiveringsmekanismen för Cdk5 under differentiering av muskelceller. Proteinkinas C zeta (PKCzeta) avslöjades ha en förmåga att accelera klyvningen av p35 till p25, och därmed öka aktiviteten hos Cdk5. Nestin kunde genom sin förmåga att reglera Cdk5 signalkomplexet styra muskelcellernas differentiering. Denna doktorsavhandling har på ett avgörande vis ökat förståelsen av de reglerande mekanismer som styr Cdk5 aktivering. Avhandling presenterar nestin och PKCzeta som kritiska faktorer i denna reglering. Vidare innehåller avhandlingen ny information om de cellulära funktionerna hos nestin som vi har visat vara en viktig reglerare av cellernas överlevnad och differentiering.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
The aim of the study was to create and evaluate an intervention programme for Tanzanian children from a low-income area who are at risk of reading and writing difficulties. The learning difficulties, including reading and writing difficulties, are likely to be behind many of the common school problems in Tanzania, but they are not well understood, and research is needed. The design of the study included an identification and intervention phase with follow-up. A group based dynamic assessment approach was used in identifying children at risk of difficulties in reading and writing. The same approach was used in the intervention. The study was a randomized experiment with one experimental and two control groups. For the experimental and the control groups, a total of 96 (46 girls and 50 boys) children from grade one were screened out of 301 children from two schools in a low income urban area of Dar-es-Salaam. One third of the children, the experimental group, participated in an intensive training programme in literacy skills for five weeks, six hours per week, aimed at promoting reading and writing ability, while the children in the control groups had a mathematics and art programme. Follow-up was performed five months after the intervention. The intervention programme and the tests were based on the Zambian BASAT (Basic Skill Assessment Tool, Ketonen & Mulenga, 2003), but the content was drawn from the Kiswahili school curriculum in Tanzania. The main components of the training and testing programme were the same, only differing in content. The training process was different from traditional training in Tanzanian schools in that principles of teaching and training in dynamic assessment were followed. Feedback was the cornerstone of the training and the focus was on supporting the children in exploring knowledge and strategies in performing the tasks. The experimental group improved significantly more (p = .000) than the control groups during the intervention from pre-test to follow-up (repeated measures ANOVA). No differences between the control groups were noticed. The effect was significant on all the measures: phonological awareness, reading skills, writing skills and overall literacy skills. A transfer effect on school marks in Kiswahili and English was found. Following a discussion of the results, suggestions for further research and adaptation of the programme are presented.
Resumo:
The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.
Resumo:
Tämän tutkielma tutkii omakotitalojen hintadynamiikkaa Suomessa 1985Q1-2009Q2 välisenä aikana. Tarkoituksena on luoda pitkänaikavälin tasapainomalli sekä lyhyenajan vektorivirheenkorjausmalli, jonka avulla voidaan selvittää asuntojen hintojen mukautumisnopeus kohti tasapainotilaa. Pitkänajan tasapainomallin mukaan omakotitalojen hintaan vaikuttavat eniten kotitalouksien käytettävissä olevat tulot sekä suhteellinen velkaantuneisuus. Koron merkitys jäi mallissa suhteellisen pieneksi. Sekä tulot että velkaantuneisuus vaikuttavat omakotitalojen hintaan positiivisesti. Asuntojen hintojen mukautumisnopeus kohti tasapainotilaa on kohtalaisen nopeaa. Mallin mukaan Suomessa ei ole havaittavissa selvää asuntojen hintakuplaa.
Resumo:
This thesis investigates the effectiveness of time-varying hedging during the financial crisis of 2007 and the European Debt Crisis of 2010. In addition, the seven test economies are part of the European Monetary Union and these countries are in different economical states. Time-varying hedge ratio was constructed using conditional variances and correlations, which were created by using multivariate GARCH models. Here we have used three different underlying portfolios: national equity markets, government bond markets and the combination of these two. These underlying portfolios were hedged by using credit default swaps. Empirical part includes the in-sample and out-of-sample analysis, which are constructed by using constant and dynamic models. Moreover, almost in every case dynamic models outperform the constant ones in the determination of the hedge ratio. We could not find any statistically significant evidence to support the use of asymmetric dynamic conditional correlation model. In addition, our findings are in line with prior literature and support the use of time-varying hedge ratio. Finally, we found that in some cases credit default swaps are not suitable instruments for hedging and they act more as a speculative instrument.
Resumo:
This master’s thesis aims to examine the relationship between dynamic capabilities and operational-level innovations. In addition, measures for the concept of dynamic capabilities are developed. The study was executed in the magazine publishing industry which is considered favourable for examining dynamic capabilities, since the sector is characterized by rapid change. As a basis for the study and the measure development, a literary review was conducted. Data for the empirical section was gathered by a survey targeted to chief-editors of Finnish consumer magazines. The relationship between dynamic capabilities and innovation was examined by multiple linear regression. The results indicate that dynamic capabilities have effect on the emergence of radical innovations. Environmental dynamism’s effect on radical innovations was not detected. Also, dynamic capabilities’ effect on innovation was not greater in turbulent operating environment.
Resumo:
The objective of this thesis is the development of a multibody dynamic model matching the observed movements of the lower limb of a skier performing the skating technique in cross-country style. During the construction of this model, the formulation of the equation of motion was made using the Euler - Lagrange approach with multipliers applied to a multibody system in three dimensions. The description of the lower limb of the skate skier and the ski was completed by employing three bodies, one representing the ski, and two representing the natural movements of the leg of the skier. The resultant system has 13 joint constraints due to the interconnection of the bodies, and four prescribed kinematic constraints to account for the movements of the leg, leaving the amount of degrees of freedom equal to one. The push-off force exerted by the skate skier was taken directly from measurements made on-site in the ski tunnel at the Vuokatti facilities (Finland) and was input into the model as a continuous function. Then, the resultant velocities and movement of the ski, center of mass of the skier, and variation of the skating angle were studied to understand the response of the model to the variation of important parameters of the skate technique. This allowed a comparison of the model results with the real movement of the skier. Further developments can be made to this model to better approximate the results to the real movement of the leg. One can achieve this by changing the constraints to include the behavior of the real leg joints and muscle actuation. As mentioned in the introduction of this thesis, a multibody dynamic model can be used to provide relevant information to ski designers and to obtain optimized results of the given variables, which athletes can use to improve their performance.
Resumo:
Family businesses are among the longest-lived most prevalent institutions in the world and they are an important source of economic development and growth. Ownership is a key to the business life of the firm and also one main key in family business definition. There is only a little portfolio entrepreneurship or portfolio business research within family business context. The absence of empirical evidence on the long-term relationship between family ownership and portfolio development presents an important gap in the family business literature. This study deals with the family business ownership changes and the development of portfolios in the family business and it is positioned in to the conversation of family business, growth, ownership, management and strategy. This study contributes and expands the existing body of theory on family business and ownership. From the theoretical point of view this study combines insights from the fields of portfolio entrepreneurship, ownership, and family business and integrate them. This crossfertilization produces interesting empirical and theoretical findings that can constitute a basis for solid contributions to the understanding of ownership dynamics and portfolio entrepreneurship in family firms. The research strategy chosen for this study represents longitudinal, qualitative, hermeneutic, and deductive approaches.The empirical part of study is using a case study approach with embedded design, that is, multiple levels of analysis within a single study. The study consists of two cases and it begins with a pilot case which will form a preunderstanding on the phenomenon. Pilot case develops the methodology approach to build in the main case and the main case will deepen the understanding of the phenomenon. This study develops and tests a research method of family business portfolio development focusing on investigating how ownership changes are influencing to the family business structures over time. This study reveals the linkages between dimensions of ownership and how they give rise to portfolio business development within the context of the family business. The empirical results of the study suggest that family business ownership is dynamic and owners are using ownership as a tool for creating business portfolios.
Resumo:
Preparation of optically active compounds is of high importance in modern medicinal chemistry. Despite recent advances in the field of asymmetric synthesis, resolution of racemates still remains the most utilized way for preparation of single enantiomers in industrial scale due to its cost-efficiency and simplicity. Enzymatic kinetic resolution (KR) of racemates is a classical method for separation of enantiomers. One of its drawbacks is the limitation of target enantiomer yield to 50%. Dynamic Kinetic Resolution (DKR) allows to reach yields up to 100% by in situ racemization of the less reactive enantiomer. In the first part of this thesis, a number of half-sandwich ruthenium complexes were prepared and evaluated as catalysts for racemization of optically active secondary alcohols. A leading catalyst, Bn5CpRu(CO)2Cl, was identified. The catalyst discovered was extensively characterized by its application for DKR of a broad range of secondary alcohols in a wide range of reaction loadings (1 mmol – 1 mol). Cost-efficient chromatography-free procedure for preparation of this catalyst was developed. Further, detailed kinetic and mechanistic studies of the racemization reactions were performed. Comparison of racemization rates in the presence of Bn5CpRu(CO)2Cl and Ph5CpRu(CO)2Cl catalysts reveals that the performance of the catalytic system can be adjusted by matching of the electronic properties of the catalysts and the substrates. Moreover, dependence of the rate-limiting step from the electronic properties of the reagents was observed. Important conclusions about reaction mechanism were made. Finally, an alternative approach to DKR of amines based on space separated vessels was addressed. This procedure allows the combination of thermolabile enzyme with racemization catalysts active only at high temperatures.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.