32 resultados para Domain representation in OWL
Resumo:
Työn tavoitteena oli kartoittaa vaihtoehtoisia menetelmiä perinteiselle aikatasossa tapahtuvalle kulmastabiilisuuden mallinnukselle käyttövarmuustarkastelussa. Vaihtoehtoisiin menetelmiin tutustuttiin kirjallisuuden avulla ja valittiin menetelmä testattavaksi pohjoismaisessa yhteiskäyttöjärjestelmässä. Vaihtoehtoisen menetelmän ominaisuusvaatimuksiin kuului nopeampi laskenta, luotettava stabiilien ja epästabiilien tilanteiden seulontakyky ja menetelmän antama indeksi stabiilisuus-/epästabiilisuusasteesta. Pääasiassa menetelmät, joihin tutustuttiin, arvioivat vain transienttia stabiilisuutta. SIME-menetelmä soveltui myös dynaamisen stabiilisuuden arviointiin. Suomessa voi dynaamisella stabiilisuudella olla tulevaisuudessa merkittävä rooli käyttövarmuustarkasteluissa. SIME-menetelmän toimivuutta testattiin osin yksinkertaistetulla Nordel-verkkomallilla, ja saadut tulokset olivat lupaavia. Menetelmä täytti uudelle menetelmälle asetetut vaatimukset, vaikka ongelmiakin esiintyi. Testauksessa käytetyn menetelmän edelleen kehittäminen ja menetelmän testaaminen täydellisellä verkkomallilla on suositeltavaa.
Resumo:
In this thesis, we propose to infer pixel-level labelling in video by utilising only object category information, exploiting the intrinsic structure of video data. Our motivation is the observation that image-level labels are much more easily to be acquired than pixel-level labels, and it is natural to find a link between the image level recognition and pixel level classification in video data, which would transfer learned recognition models from one domain to the other one. To this end, this thesis proposes two domain adaptation approaches to adapt the deep convolutional neural network (CNN) image recognition model trained from labelled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of unlabelled video data. Our proposed approaches explicitly model and compensate for the domain adaptation from the source domain to the target domain which in turn underpins a robust semantic object segmentation method for natural videos. We demonstrate the superior performance of our methods by presenting extensive evaluations on challenging datasets comparing with the state-of-the-art methods.