51 resultados para Discrete Multicriteria Problems
Resumo:
This thesis studies the use of heuristic algorithms in a number of combinatorial problems that occur in various resource constrained environments. Such problems occur, for example, in manufacturing, where a restricted number of resources (tools, machines, feeder slots) are needed to perform some operations. Many of these problems turn out to be computationally intractable, and heuristic algorithms are used to provide efficient, yet sub-optimal solutions. The main goal of the present study is to build upon existing methods to create new heuristics that provide improved solutions for some of these problems. All of these problems occur in practice, and one of the motivations of our study was the request for improvements from industrial sources. We approach three different resource constrained problems. The first is the tool switching and loading problem, and occurs especially in the assembly of printed circuit boards. This problem has to be solved when an efficient, yet small primary storage is used to access resources (tools) from a less efficient (but unlimited) secondary storage area. We study various forms of the problem and provide improved heuristics for its solution. Second, the nozzle assignment problem is concerned with selecting a suitable set of vacuum nozzles for the arms of a robotic assembly machine. It turns out that this is a specialized formulation of the MINMAX resource allocation formulation of the apportionment problem and it can be solved efficiently and optimally. We construct an exact algorithm specialized for the nozzle selection and provide a proof of its optimality. Third, the problem of feeder assignment and component tape construction occurs when electronic components are inserted and certain component types cause tape movement delays that can significantly impact the efficiency of printed circuit board assembly. Here, careful selection of component slots in the feeder improves the tape movement speed. We provide a formal proof that this problem is of the same complexity as the turnpike problem (a well studied geometric optimization problem), and provide a heuristic algorithm for this problem.
Resumo:
This work contains a series of studies on the optimization of three real-world scheduling problems, school timetabling, sports scheduling and staff scheduling. These challenging problems are solved to customer satisfaction using the proposed PEAST algorithm. The customer satisfaction refers to the fact that implementations of the algorithm are in industry use. The PEAST algorithm is a product of long-term research and development. The first version of it was introduced in 1998. This thesis is a result of a five-year development of the algorithm. One of the most valuable characteristics of the algorithm has proven to be the ability to solve a wide range of scheduling problems. It is likely that it can be tuned to tackle also a range of other combinatorial problems. The algorithm uses features from numerous different metaheuristics which is the main reason for its success. In addition, the implementation of the algorithm is fast enough for real-world use.
Resumo:
Transportation and warehousing are large and growing sectors in the society, and their efficiency is of high importance. Transportation also has a large share of global carbondioxide emissions, which are one the leading causes of anthropogenic climate warming. Various countries have agreed to decrease their carbon emissions according to the Kyoto protocol. Transportation is the only sector where emissions have steadily increased since the 1990s, which highlights the importance of transportation efficiency. The efficiency of transportation and warehousing can be improved with the help of simulations, but models alone are not sufficient. This research concentrates on the use of simulations in decision support systems. Three main simulation approaches are used in logistics: discrete-event simulation, systems dynamics, and agent-based modeling. However, individual simulation approaches have weaknesses of their own. Hybridization (combining two or more approaches) can improve the quality of the models, as it allows using a different method to overcome the weakness of one method. It is important to choose the correct approach (or a combination of approaches) when modeling transportation and warehousing issues. If an inappropriate method is chosen (this can occur if the modeler is proficient in only one approach or the model specification is not conducted thoroughly), the simulation model will have an inaccurate structure, which in turn will lead to misleading results. This issue can further escalate, as the decision-maker may assume that the presented simulation model gives the most useful results available, even though the whole model can be based on a poorly chosen structure. In this research it is argued that simulation- based decision support systems need to take various issues into account to make a functioning decision support system. The actual simulation model can be constructed using any (or multiple) approach, it can be combined with different optimization modules, and there needs to be a proper interface between the model and the user. These issues are presented in a framework, which simulation modelers can use when creating decision support systems. In order for decision-makers to fully benefit from the simulations, the user interface needs to clearly separate the model and the user, but at the same time, the user needs to be able to run the appropriate runs in order to analyze the problems correctly. This study recommends that simulation modelers should start to transfer their tacit knowledge to explicit knowledge. This would greatly benefit the whole simulation community and improve the quality of simulation-based decision support systems as well. More studies should also be conducted by using hybrid models and integrating simulations with Graphical Information Systems.
Resumo:
This dissertation examines knowledge and industrial knowledge creation processes. It looks at the way knowledge is created in industrial processes based on data, which is transformed into information and finally into knowledge. In the context of this dissertation the main tool for industrial knowledge creation are different statistical methods. This dissertation strives to define industrial statistics. This is done using an expert opinion survey, which was sent to a number of industrial statisticians. The survey was conducted to create a definition for this field of applied statistics and to demonstrate the wide applicability of statistical methods to industrial problems. In this part of the dissertation, traditional methods of industrial statistics are introduced. As industrial statistics are the main tool for knowledge creation, the basics of statistical decision making and statistical modeling are also included. The widely known Data Information Knowledge Wisdom (DIKW) hierarchy serves as a theoretical background for this dissertation. The way that data is transformed into information, information into knowledge and knowledge finally into wisdom is used as a theoretical frame of reference. Some scholars have, however, criticized the DIKW model. Based on these different perceptions of the knowledge creation process, a new knowledge creation process, based on statistical methods is proposed. In the context of this dissertation, the data is a source of knowledge in industrial processes. Because of this, the mathematical categorization of data into continuous and discrete types is explained. Different methods for gathering data from processes are clarified as well. There are two methods for data gathering in this dissertation: survey methods and measurements. The enclosed publications provide an example of the wide applicability of statistical methods in industry. In these publications data is gathered using surveys and measurements. Enclosed publications have been chosen so that in each publication, different statistical methods are employed in analyzing of data. There are some similarities between the analysis methods used in the publications, but mainly different methods are used. Based on this dissertation the use of statistical methods for industrial knowledge creation is strongly recommended. With statistical methods it is possible to handle large datasets and different types of statistical analysis results can easily be transformed into knowledge.
Resumo:
This thesis presents an experimental study and numerical study, based on the discrete element method (DEM), of bell-less charging in the blast furnace. The numerical models are based on the microscopic interaction between the particles in the blast furnace charging process. The emphasis is put on model validation, investigating several phenomena in the charging process, and on finding factors that influence the results. The study considers and simulates size segregation in the hopper discharging process, particle flow and behavior on the chute, which is the key equipment in the charging system, using mono-size spherical particles, multi-size spheres and nonspherical particles. The behavior of the particles at the burden surface and pellet percolation into a coke layer is also studied. Small-scale experiments are used to validate the DEM models.
Resumo:
Children’s pain symptoms and sleep problems are among the most common health complaints. They distract children from activities, decrease the quality of life, contribute to a significant economic burden, and have shown continuity into adulthood. The main aims of this thesis were to investigate long-term changes in the prevalence of pain symptoms and sleep problems among Finnish school-aged children, and the later mental health of those who in childhood experience pain. Prevalence, co-occurrence, and associated psychosocial factors of pain symptoms and sleep problems were also assessed. In study I, prevalence changes in eight-year-old children’s pain symptoms and sleep problems were investigated in three cross-sectional population-based samples (years 1989: n=1038, 1999: n=1035, and 2005: n=1030). In study II, cross-sectional associations between pain symptoms, sleep problems, and psychosocial factors were assessed among 13-18-year-old adolescents (n=2476). In studies III and IV, associations between pain symptoms at age eight (n=6017), and register-based data on antidepressant use and severe suicidality by age 24, were examined in a nationwide birth cohort. Pain symptoms and sleep problems were common and often co-occurred. A considerable number of children’s pain symptoms remained unrecognized by the parents. The prevalence of pain symptoms, sleep problems, and multiple concurrent symptoms approximately doubled from 1989 to 2005. Psychiatric difficulties or demographic factors did not explain the increase. Psychosocial factors that were associated with pain, sleep problems, and a higher number of symptoms, were female sex, psychological difficulties, emotional symptoms, smoking, victimization, and feeling not cared about by teachers. In longitudinal analyses, the child’s own report of headache, and to a smaller degree the parental report of the child’s abdominal pain predicted later antidepressant use. Parental report of the child’s abdominal pain predicted severe suicidality among males. If one of the symptoms is present, health care professionals should inquire about other symptoms as well. Questions should be directed to the children, not only to their parents. Inquiring about psychiatric difficulties, substance use, victimization, and relations with teachers should be included as a part of the assessment. Further studies are needed to clarify the reasons that underlie the increased prevalence rates, and the factors that may increase or decrease the risk for later mental health problems among pain-suffering children.
Resumo:
Statistical analyses of measurements that can be described by statistical models are of essence in astronomy and in scientific inquiry in general. The sensitivity of such analyses, modelling approaches, and the consequent predictions, is sometimes highly dependent on the exact techniques applied, and improvements therein can result in significantly better understanding of the observed system of interest. Particularly, optimising the sensitivity of statistical techniques in detecting the faint signatures of low-mass planets orbiting the nearby stars is, together with improvements in instrumentation, essential in estimating the properties of the population of such planets, and in the race to detect Earth-analogs, i.e. planets that could support liquid water and, perhaps, life on their surfaces. We review the developments in Bayesian statistical techniques applicable to detections planets orbiting nearby stars and astronomical data analysis problems in general. We also discuss these techniques and demonstrate their usefulness by using various examples and detailed descriptions of the respective mathematics involved. We demonstrate the practical aspects of Bayesian statistical techniques by describing several algorithms and numerical techniques, as well as theoretical constructions, in the estimation of model parameters and in hypothesis testing. We also apply these algorithms to Doppler measurements of nearby stars to show how they can be used in practice to obtain as much information from the noisy data as possible. Bayesian statistical techniques are powerful tools in analysing and interpreting noisy data and should be preferred in practice whenever computational limitations are not too restrictive.
Resumo:
Vaikka liiketoimintatiedon hallintaa sekä johdon päätöksentekoa on tutkittu laajasti, näiden kahden käsitteen yhteisvaikutuksesta on olemassa hyvin rajallinen määrä tutkimustietoa. Tulevaisuudessa aiheen tärkeys korostuu, sillä olemassa olevan datan määrä kasvaa jatkuvasti. Yritykset tarvitsevat jatkossa yhä enemmän kyvykkyyksiä sekä resursseja, jotta sekä strukturoitua että strukturoimatonta tietoa voidaan hyödyntää lähteestä riippumatta. Nykyiset Business Intelligence -ratkaisut mahdollistavat tehokkaan liiketoimintatiedon hallinnan osana johdon päätöksentekoa. Aiemman kirjallisuuden pohjalta, tutkimuksen empiirinen osuus tunnistaa liiketoimintatiedon hyödyntämiseen liittyviä tekijöitä, jotka joko tukevat tai rajoittavat johdon päätöksentekoprosessia. Tutkimuksen teoreettinen osuus johdattaa lukijan tutkimusaiheeseen kirjallisuuskatsauksen avulla. Keskeisimmät tutkimukseen liittyvät käsitteet, kuten Business Intelligence ja johdon päätöksenteko, esitetään relevantin kirjallisuuden avulla – tämän lisäksi myös dataan liittyvät käsitteet analysoidaan tarkasti. Tutkimuksen empiirinen osuus rakentuu tutkimusteorian pohjalta. Tutkimuksen empiirisessä osuudessa paneudutaan tutkimusteemoihin käytännön esimerkein: kolmen tapaustutkimuksen avulla tutkitaan sekä kuvataan toisistaan irrallisia tapauksia. Jokainen tapaus kuvataan sekä analysoidaan teoriaan perustuvien väitteiden avulla – nämä väitteet ovat perusedellytyksiä menestyksekkäälle liiketoimintatiedon hyödyntämiseen perustuvalle päätöksenteolle. Tapaustutkimusten avulla alkuperäistä tutkimusongelmaa voidaan analysoida tarkasti huomioiden jo olemassa oleva tutkimustieto. Analyysin tulosten avulla myös yksittäisiä rajoitteita sekä mahdollistavia tekijöitä voidaan analysoida. Tulokset osoittavat, että rajoitteilla on vahvasti negatiivinen vaikutus päätöksentekoprosessin onnistumiseen. Toisaalta yritysjohto on tietoinen liiketoimintatiedon hallintaan liittyvistä positiivisista seurauksista, vaikka kaikkia mahdollisuuksia ei olisikaan hyödynnetty. Tutkimuksen merkittävin tulos esittelee viitekehyksen, jonka puitteissa johdon päätöksentekoprosesseja voidaan arvioida sekä analysoida. Despite the fact that the literature on Business Intelligence and managerial decision-making is extensive, relatively little effort has been made to research the relationship between them. This particular field of study has become important since the amount of data in the world is growing every second. Companies require capabilities and resources in order to utilize structured data and unstructured data from internal and external data sources. However, the present Business Intelligence technologies enable managers to utilize data effectively in decision-making. Based on the prior literature, the empirical part of the thesis identifies the enablers and constraints in computer-aided managerial decision-making process. In this thesis, the theoretical part provides a preliminary understanding about the research area through a literature review. The key concepts such as Business Intelligence and managerial decision-making are explored by reviewing the relevant literature. Additionally, different data sources as well as data forms are analyzed in further detail. All key concepts are taken into account when the empirical part is carried out. The empirical part obtains an understanding of the real world situation when it comes to the themes that were covered in the theoretical part. Three selected case companies are analyzed through those statements, which are considered as critical prerequisites for successful computer-aided managerial decision-making. The case study analysis, which is a part of the empirical part, enables the researcher to examine the relationship between Business Intelligence and managerial decision-making. Based on the findings of the case study analysis, the researcher identifies the enablers and constraints through the case study interviews. The findings indicate that the constraints have a highly negative influence on the decision-making process. In addition, the managers are aware of the positive implications that Business Intelligence has for decision-making, but all possibilities are not yet utilized. As a main result of this study, a data-driven framework for managerial decision-making is introduced. This framework can be used when the managerial decision-making processes are evaluated and analyzed.
Resumo:
In today’s world because of the rapid advancement in the field of technology and business, the requirements are not clear, and they are changing continuously in the development process. Due to those changes in the requirements the software development becomes very difficult. Use of traditional software development methods such as waterfall method is not a good option, as the traditional software development methods are not flexible to requirements and the software can be late and over budget. For developing high quality software that satisfies the customer, the organizations can use software development methods, such as agile methods which are flexible to change requirements at any stage in the development process. The agile methods are iterative and incremental methods that can accelerate the delivery of the initial business values through the continuous planning and feedback, and there is close communication between the customer and developers. The main purpose of the current thesis is to find out the problems in traditional software development and to show how agile methods reduced those problems in software development. The study also focuses the different success factors of agile methods, the success rate of agile projects and comparison between traditional and agile software development.
Resumo:
Innovative gas cooled reactors, such as the pebble bed reactor (PBR) and the gas cooled fast reactor (GFR) offer higher efficiency and new application areas for nuclear energy. Numerical methods were applied and developed to analyse the specific features of these reactor types with fully three dimensional calculation models. In the first part of this thesis, discrete element method (DEM) was used for a physically realistic modelling of the packing of fuel pebbles in PBR geometries and methods were developed for utilising the DEM results in subsequent reactor physics and thermal-hydraulics calculations. In the second part, the flow and heat transfer for a single gas cooled fuel rod of a GFR were investigated with computational fluid dynamics (CFD) methods. An in-house DEM implementation was validated and used for packing simulations, in which the effect of several parameters on the resulting average packing density was investigated. The restitution coefficient was found out to have the most significant effect. The results can be utilised in further work to obtain a pebble bed with a specific packing density. The packing structures of selected pebble beds were also analysed in detail and local variations in the packing density were observed, which should be taken into account especially in the reactor core thermal-hydraulic analyses. Two open source DEM codes were used to produce stochastic pebble bed configurations to add realism and improve the accuracy of criticality calculations performed with the Monte Carlo reactor physics code Serpent. Russian ASTRA criticality experiments were calculated. Pebble beds corresponding to the experimental specifications within measurement uncertainties were produced in DEM simulations and successfully exported into the subsequent reactor physics analysis. With the developed approach, two typical issues in Monte Carlo reactor physics calculations of pebble bed geometries were avoided. A novel method was developed and implemented as a MATLAB code to calculate porosities in the cells of a CFD calculation mesh constructed over a pebble bed obtained from DEM simulations. The code was further developed to distribute power and temperature data accurately between discrete based reactor physics and continuum based thermal-hydraulics models to enable coupled reactor core calculations. The developed method was also found useful for analysing sphere packings in general. CFD calculations were performed to investigate the pressure losses and heat transfer in three dimensional air cooled smooth and rib roughened rod geometries, housed inside a hexagonal flow channel representing a sub-channel of a single fuel rod of a GFR. The CFD geometry represented the test section of the L-STAR experimental facility at Karlsruhe Institute of Technology and the calculation results were compared to the corresponding experimental results. Knowledge was gained of the adequacy of various turbulence models and of the modelling requirements and issues related to the specific application. The obtained pressure loss results were in a relatively good agreement with the experimental data. Heat transfer in the smooth rod geometry was somewhat under predicted, which can partly be explained by unaccounted heat losses and uncertainties. In the rib roughened geometry heat transfer was severely under predicted by the used realisable k − epsilon turbulence model. An additional calculation with a v2 − f turbulence model showed significant improvement in the heat transfer results, which is most likely due to the better performance of the model in separated flow problems. Further investigations are suggested before using CFD to make conclusions of the heat transfer performance of rib roughened GFR fuel rod geometries. It is suggested that the viewpoints of numerical modelling are included in the planning of experiments to ease the challenging model construction and simulations and to avoid introducing additional sources of uncertainties. To facilitate the use of advanced calculation approaches, multi-physical aspects in experiments should also be considered and documented in a reasonable detail.
Resumo:
The two main objectives of Bayesian inference are to estimate parameters and states. In this thesis, we are interested in how this can be done in the framework of state-space models when there is a complete or partial lack of knowledge of the initial state of a continuous nonlinear dynamical system. In literature, similar problems have been referred to as diffuse initialization problems. This is achieved first by extending the previously developed diffuse initialization Kalman filtering techniques for discrete systems to continuous systems. The second objective is to estimate parameters using MCMC methods with a likelihood function obtained from the diffuse filtering. These methods are tried on the data collected from the 1995 Ebola outbreak in Kikwit, DRC in order to estimate the parameters of the system.