45 resultados para Detector alignment and calibration methods (lasers, sources, particle-beams)
Resumo:
Allergic diseases including food allergy and eczema in an infant in combination with the everyday activities of caring for a family will pose challenges to parents. Only fragments of these challenges are revealed to health care professionals. Families have varying mental, social and economic resources to help them care for an allergic infant, and all such resources are important in determining how families succeed in meeting these challenges and the quality of the infant’s care. This study evaluated the whole burden to the family caused by an infant's allergic disease during the first 24 months of life. As the primary caregiver during this period is usually the mother, her perspective was considered important. Ecocultural theory, which considers families as capable of modifying the positive and negative forces facing them, was taken as the frame of reference. Data were collected as part of an ongoing prospective mother-infant study, and the methods included severity scoring of atopic dermatitis, dietary records, health-related quality of life measurements and assessments of the use of health care services and medications for treating the infant’s eczema, food allergy and asthma. Interviews with mothers were analysed by deductive content analysis on the basis of ecocultural theory and the family empowerment model. The theme “Living an ordinary family life” guided the organization of family activities essential for treating the infant's food allergy and eczema. These activities were sources of both strain and support for the mothers, the allergy-related supporting factors being the mother’s own knowledge of the allergy, hopes for an improvement in the infant’s condition, social support and work. An infant’s food allergy at the age of one year caused considerable strain for the mother in cases where the introduction of new foods into the child’s diet was delayed. This delay was still causing the mother additional strain when the child was 24 months of age. The infants waking at night at the ages of 12 and 24 months because of itching related to eczema caused strain for the mothers. The infants’ health-related quality of life was impaired at ages of 6 and 12 months compared with healthy infants. The principal reasons for impairments were itching, scratching and sleep disturbances at 6 and 12 months and treatment difficulties at 6 months. Problems with getting to sleep were reported at all stages irrespective of eczema and were also present in healthy infants. The economic impact of the treatment of allergic diseases on families during the first 24 months was 131 EUR (2006 value) in cases of eczema and 525 EUR in cases of food allergy. From the societal perspective, the costs of food allergy were a median of 3183 EUR (range 628–11 560 EUR) and of eczema a median of 275 EUR (range 94–1306 EUR). These large variations in costs in food allergy and eczema indicate that disease varies greatly . In conclusion, food allergy and eczema cause extra activities and costs to families which arrange these disease-related activities in such a way that they support the leading family theme “Living an ordinary family life”. Health care professionals should consider this thematic character of family life and disease-related activities in order to ensure that new treatments are sustainable, meaningful and tailored to daily activities. In addition, those mothers who are experiencing difficulties with food allergic infants or infants with eczema should be recognized early and provided with individual encouragement and support from health clinics. In the light of the present results, early detection of symptoms and effective parental guidance can contribute to the well-being and health-related quality of life of the child and family.
Resumo:
Extant research on consumer co-operation has acknowledged that the corporate purpose of consumer co-operatives deviates significantly from the purpose of investor-owned firms (IOFs – the dominant form in market economies and in theory development in the field of business economics) and also suggested that the management of consumer co-operatives differs from the management of IOFs. Despite this, there is a scarcity of research focusing on the management of consumer co-operatives in general and the ways this different purpose manifests in their management in particular. In other words, research on consumer cooperatives has only started to discover the importance of identifying the premises of these organizations and generating management and organization theories that take them into account. The overall objective of this study is to map out some of the implications that the purpose of consumer co-operation has for the management and governance of consumer co-operatives. To put it more precisely, by combining interview data gathered from Finnish consumer cooperatives (S Group, OP Bank Group and POP Bank) and extant literature, this study aims to generate or elaborate on definitions and outlines of the features that co-operative purpose poses for the strategic management, governance and managerial competence needed for consumer co-operatives. The study consists of two parts. The first part introduces the research topic, methods and publications, as well as discusses the overall outcomes. The second part consists of four publications that address the research questions from different viewpoints. The analyses of this study indicate that due to the purpose of consumer co-operation, the roles of locality and regionality become emphasized in their management. While locality and regionality are potential sources of competitive advantage for consumer co-operatives, geographic boundness sets significant boundary conditions for the strategic management of these organizations. Further, the purpose of consumer co-operation may pose several challenges to governance and set specific competence demands for the managers of these organizations. Associating the observations from various streams of research on management and governance with the purpose of consumer co-operation and examining these issues further, the thesis contributes to elaboration of theory in the field. While the thesis is by no means comprehensive (but instead reflects a co-operative research project in its early stages), it does shed light on some key ideas of management and governance and offers leads to theory and, thereby, will prove useful to elaborators, disseminators and appliers of knowledge on co-operation.
Resumo:
The purpose of this thesis is to study the international technology transfer of transition economy SME entrepreneurs to the developed countries. The research aims to characterize the phenomenon by studying Russian SME technology transfer to Finland with the research methods from case studies. In addition to characterizing the phenomenon, the research finds out factors that motivate Russian entrepreneurs to conduct international technology transfer and what are the challenges the Russian entrepreneurs face when they enter the Finnish business environment. The qualitative data was collected from six semi-structured interviews with the entrepreneurs and several secondary data sources, considering four different technology transfer cases. The data and the analysis showed that the case companies in Finland are mostly linked to manufacturing of physical products. The entrepreneurs are motivated to come to Finland mainly by the opportunities and support the Finnish business and innovation environment provides to the entrepreneurs and by the personal gain that they get by establishing the company in Finland. Major challenges in the process include time constraints and capital requirements, difficulties on achieving sales on the Finnish market and finding skilled personnel to support the Russian management and owners.
Resumo:
Tool center point calibration is a known problem in industrial robotics. The major focus of academic research is to enhance the accuracy and repeatability of next generation robots. However, operators of currently available robots are working within the limits of the robot´s repeatability and require calibration methods suitable for these basic applications. This study was conducted in association with Stresstech Oy, which provides solutions for manufacturing quality control. Their sensor, based on the Barkhausen noise effect, requires accurate positioning. The accuracy requirement admits a tool center point calibration problem if measurements are executed with an industrial robot. Multiple possibilities are available in the market for automatic tool center point calibration. Manufacturers provide customized calibrators to most robot types and tools. With the handmade sensors and multiple robot types that Stresstech uses, this would require great deal of labor. This thesis introduces a calibration method that is suitable for all robots which have two digital input ports free. It functions with the traditional method of using a light barrier to detect the tool in the robot coordinate system. However, this method utilizes two parallel light barriers to simultaneously measure and detect the center axis of the tool. Rotations about two axes are defined with the center axis. The last rotation about the Z-axis is calculated for tools that have different width of X- and Y-axes. The results indicate that this method is suitable for calibrating the geometric tool center point of a Barkhausen noise sensor. In the repeatability tests, a standard deviation inside robot repeatability was acquired. The Barkhausen noise signal was also evaluated after recalibration and the results indicate correct calibration. However, future studies should be conducted using a more accurate manipulator, since the method employs the robot itself as a measuring device.
Resumo:
The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.
Resumo:
The purpose of this thesis was to study the design of demand forecasting processes and management of demand. In literature review were different processes found and forecasting methods and techniques interviewed. Also role of bullwhip effect in supply chain was identified and how to manage it with information sharing operations. In the empirical part of study is at first described current situation and challenges in case company. After that will new way to handle demand introduced with target budget creation and how information sharing with 5 products and a few customers would bring benefits to company. Also the new S&OP process created within this study and organization for it.
Resumo:
In today’s world because of the rapid advancement in the field of technology and business, the requirements are not clear, and they are changing continuously in the development process. Due to those changes in the requirements the software development becomes very difficult. Use of traditional software development methods such as waterfall method is not a good option, as the traditional software development methods are not flexible to requirements and the software can be late and over budget. For developing high quality software that satisfies the customer, the organizations can use software development methods, such as agile methods which are flexible to change requirements at any stage in the development process. The agile methods are iterative and incremental methods that can accelerate the delivery of the initial business values through the continuous planning and feedback, and there is close communication between the customer and developers. The main purpose of the current thesis is to find out the problems in traditional software development and to show how agile methods reduced those problems in software development. The study also focuses the different success factors of agile methods, the success rate of agile projects and comparison between traditional and agile software development.
Resumo:
Demand for the use of energy systems, entailing high efficiency as well as availability to harness renewable energy sources, is a key issue in order to tackling the threat of global warming and saving natural resources. Organic Rankine cycle (ORC) technology has been identified as one of the most promising technologies in recovering low-grade heat sources and in harnessing renewable energy sources that cannot be efficiently utilized by means of more conventional power systems. The ORC is based on the working principle of Rankine process, but an organic working fluid is adopted in the cycle instead of steam. This thesis presents numerical and experimental results of the study on the design of small-scale ORCs. Two main applications were selected for the thesis: waste heat re- covery from small-scale diesel engines concentrating on the utilization of the exhaust gas heat and waste heat recovery in large industrial-scale engine power plants considering the utilization of both the high and low temperature heat sources. The main objective of this work was to identify suitable working fluid candidates and to study the process and turbine design methods that can be applied when power plants based on the use of non-conventional working fluids are considered. The computational work included the use of thermodynamic analysis methods and turbine design methods that were based on the use of highly accurate fluid properties. In addition, the design and loss mechanisms in supersonic ORC turbines were studied by means of computational fluid dynamics. The results indicated that the design of ORC is highly influenced by the selection of the working fluid and cycle operational conditions. The results for the turbine designs in- dicated that the working fluid selection should not be based only on the thermodynamic analysis, but requires also considerations on the turbine design. The turbines tend to be fast rotating, entailing small blade heights at the turbine rotor inlet and highly supersonic flow in the turbine flow passages, especially when power systems with low power outputs are designed. The results indicated that the ORC is a potential solution in utilizing waste heat streams both at high and low temperatures and both in micro and larger scale appli- cations.
Resumo:
The objectives of this work were synthesizing an EDTA-β-CD adsorbent and investigating its adsorption potential and applications in preconcentration of REEs from aqueous phase. The adsorption capacity of EDTA-β-CD was investigated. The adsorption studies were performed by batch techniques both in one- and multi-component systems. The effects of pH, contact time and initial concentration were evaluated. The analytical detection methods and characterization methods were presented. EDTA-β-CD adsorbent was synthesized successfully with high EDTA coverage. The maximum REEs uptake was 0.310 mmol g-1 for La(III), 0.337 mmol g-1 for Ce(III) and 0.353 mmol g-1 for Eu(III), respectively. The kinetics of REEs onto EDTA-β-CD fitted well to pseudo-second-order model and the adsorption rate was affected by intra-particle diffusion. The experimental data of one component studies fitted to Langmuir isotherm model indicating the homogeneous surface of the adsorbent. The extended Sips model was applicable for the isotherm studies in three-component system. The electrostatic interaction, chelation and complexation were all involved in the adsorption mechanism. The preconcentration of RE ions and regeneration of EDTA-β-CD were successful. Overall, EDTA-β-CD is an effective adsorbent in adsorption and preconcentration of REEs.
Resumo:
The hen’s egg is a source of new life. Therefore, it contains many biologically active compounds. In addition to being a very nutritious food and also commonly used in the food industry due to its many techno-functional properties, the egg can serve as a source of compounds used as nutra-, pharmaand cosmeceuticals. One such interesting compound is ovomucin, an egg white protein responsible for the gel-like properties of thick egg white. Previous studies have indicated that ovomucin and ovomucin-derived peptides have several different bioactive properties. The objectives of the present study were to develop isolation methods for ovomucin, to characterize the structure of ovomucin, to compare various egg fractions as sources of ovomucin, to study the effects of various dissolving methods for ovomucin, and to investigate the bioactive properties of ovomucin and ovomucin-derived peptides. A simple and rapid method for crude ovomucin separation was developed. By using this method crude ovomucin was isolated within hours, compared to the 1-2 days (including a dialysis step) needed when using several other methods. Structural characterization revealed that ovomucin is composed of two subunits, α- and β-ovomucin, as egg white protein formerly called α1-ovomucin seemed to be ovostatin. However, it might be possible that ovostatin is associated within β- and α-ovomucin. This interaction could even have some effect on the physical nature of various egg white layers. Although filtration by-product fraction was a very prominent source of both crude and β-ovomucin, process development has reduced its amount so significantly that it has no practical meaning anymore. Thus, the commercial liquid egg white is probably the best option, especially if it generally contains amounts of β-ovomucin as high as were found in these studies. Crude ovomucin was dissolved both by using physical and enzymic methods. Although sonication was the most effective physical method for ovomucin solubilisation, colloid milling seemed to be a very promising alternative. A milk-like, smooth and opaque crude ovomucin suspension was attained by using a colloid mill. The dissolved ovomucin fractions were further tested for bioactive properties, and it was found that three dissolving methods tested produced moderate antiviral activity against Newcastle disease virus, namely colloid milling, enzymatic hydrolysis and a combination of sonicaton and enzymatic hydrolysis. Moreover, trypsin-digested crude ovomucin was found to have moderate antiviral activity against avian influenza virus: both subtype H5 and H7.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.
Resumo:
The purpose of this two-phased study is to examine the interest of nursing students in choosing a career in older people nursing. First, the scoping phase explores the different premises for choosing older people nursing as a career. Second, the evaluation phase investigates the outcomes of the developed educational intervention involving older people as promoters of choosing a career in older people nursing, factors related to these outcomes, and experiences with educational intervention. The ultimate goal is to encourage more nursing students to choose older people nursing as their career. The scoping phase applies an exploratory design and centres around a descriptive, cross-sectional survey, documentary research and a scoping literature review. The information sources for this phase include 183 nursing students, 101 newspaper articles and 66 research articles. The evaluation phase applies a quasi-experimental design and a pre-post-test design with a non-equivalent comparison group and a post-intervention survey. The information sources for this phase include 87 nursing students and 43 older people. In both phases, statistical and narrative methods are applied in the data analysis. Nursing students neutrally regarded the idea of a career in older people nursing. The most consistent factors related to the nursing students’ career plans in older people nursing were found to be nursing work experience and various educational preparations in the field. Nursing students in the intervention group (n=40) were more interested in older people nursing and had more positive attitudes towards older people than did students in the comparison group (n=36). However, in both groups, the interest that students had at the baseline was associated with the interest at the one-month follow-up. There were no significant differences between the groups in terms of the students’ knowledge levels about ageing. The nursing students and older people alike highly appreciated participating in the educational intervention. It seems possible to positively impact nursing students and their choices to pursue careers in older people nursing, at least in the short-term. The involvement of older people as promoters of this career choice provides one encouraging alternative for impacting students’ career choices, but additional research is needed.
Resumo:
Tässä diplomityössä käsiteltiin spektrometrisia online-mittausmenetelmiä jätteiden kemiallisten ja fysikaalisten ominaisuuksien määrittämiseksi. Tavoitteena oli selvittää, mitä ominaisuuksia menetelmillä voidaan mitata ja kuinka luotettavia tuloksia mittauksilla saadaan. Diplomityössä suoritettiin kirjallisuuskatsaus, jossa käsiteltiin kolmen spektrometrisen menetelmän soveltuvuutta reaaliaikaisiin jätemittauksiin. Työn empiirisessä osassa FPXRFanalysaattorilla mitattiin neljän eri jätenäytteen alkuainepitoisuuksia. Mittauksen tarkoituksena oli selvittää, mitä alkuaineita menetelmällä voidaan mitata. FPXRF-analysaattorilla saatuja tuloksia verrattiin ICP-MS-menetelmällä saatuihin tuloksiin regressioanalyysin avulla. Työssä todettiin, että FPXRF-analysaattori sopii parhaiten kaliumin, kalsiumin, ja raudan pitoisuuksien määrittämiseen. Lisäksi lyijyn, sinkin, kromin, kloorin, kuparin, kadmiumin, arseenin, fosforin, molybdeenin ja vanadiinin määrittäminen on mahdollista, mutta tarkan pitoisuuden saamiseksi laboratoriomenetelmien käyttö voi olla tarpeen. Tutkituista jätenäytteistä menetelmä soveltui parhaiten tuhkalle ja kompostille niiden fyysisten ominaisuuksien, kuten homogeenisuuden ja kosteuspitoisuuden takia. Biojätteelle menetelmä soveltui huonosti. FPXRF-analysaattorin luotettavuuteen vaikuttaa näytteen kosteuspitoisuus, homogeenisuus, partikkelikoko, mittaustapa ja laitteen kalibrointi. Työssä tarkastelluilla menetelmillä ei voida tällä hetkellä täysin korvata laboratorioanalyyseja. FPXRF-analysaattoria voidaan kuitenkin käyttää kvalitatiiviseen tai semikvantitatiiviseen haitta-aineiden analysointiin, millä voidaan vähentää kalliiden laboratorioanalyysien tarvetta.