44 resultados para Chromosome dynamics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the past few years, a considerable number of research articles have been published relating to the structure and function of the major photosynthetic protein complexes, photosystem (PS) I, PSII, cytochrome (Cyt) b6f, and adenosine triphosphate (ATP) synthase. Sequencing of the Arabidopsis thaliana (Arabidopsis) genome together with several high-quality proteomics studies has, however, revealed that the thylakoid membrane network of plant chloroplasts still contains a number of functionally unknown proteins. These proteins may have a role as auxiliary proteins guiding the assembly, maintenance, and turnover of the thylakoid protein complexes, or they may be as yet unknown subunits of the photosynthetic complexes. Novel subunits are most likely to be found in the NAD(P)H dehydrogenase (NDH) complex, the structure and function of which have remained obscure in the absence of detailed crystallographic data, thus making this thylakoid protein complex a particularly interesting target of investigation. In this thesis, several novel thylakoid-associated proteins were identified by proteomics-based methods. The major goal of characterization of the stroma thylakoid associated polysome-nascent chain complexes was to determine the proteins that guide the dynamic life cycle of PSII. In addition, a large protein complex of ≥ 1,000 kDa, residing in the stroma thylakoid, was characterized in greater depth and it was found to be a supercomplex composed of the PSI and NDH complexes. A set of newly identified proteins from Arabidopsis thylakoids was subjected to detailed characterization using the reverse genetics approach and extensive biochemical and biophysical analysis. The role of the novel proteins, either as auxiliary proteins or subunits of the photosynthetic protein complexes, was revealed. Two novel thylakoid lumen proteins, TLP18.3 and AtCYP38, function as auxiliary proteins assisting specific steps of the assembly/repair of PSII. The role of the 10-kDa thylakoid lumen protein PsbR is related to the optimization of oxygen evolution of PSII by assisting the assembly of the PsbP protein. Two integral thylakoid membrane proteins, NDH45 and NDH48, are novel subunits of the chloroplast NDH complex. Finally, the thylakoid lumen immunophilin AtCYP20-2 is suggested to interact with the NDH complex, instead of PSII as was hypothesized earlier.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Avointen kvanttisysteemien teoria tutkii, miten vuorovaikutus laajan ympäristön kanssa muuttaa kvanttisysteemin dynamiikkaa. Kaikki kvanttisysteemit ovat pohjimmiltaan avoimia, joten tällaisten systeemien ymmärtäminen on välttämätöntä kvanttimaailman ymmärtämiseksi. Spin-bosoni -malli kuvaa avointa kaksitasosysteemiä, joka vuorovaikuttaa bosoneista koostuvan ympäristön kanssa. Useat fysikaaliset systeemit käyttäytyvät kaksitasosysteemin tavoin matalissa lämpötiloissa, jonka vuoksi spin-bosoni -mallilla on merkittävä rooli avointen kvanttisysteemien tutkimuksessa. Tutkielman ensimmäinen luku käsittelee yleistä avointen kvanttisysteemien teoriaa ja menetelmiä ei-Markovisen liikeyhtälön johtamiseksi. Ei-Markovinen liikeyhtälö kuvaa ympäristöstä systeemiin takaisin virtaavan informaation vaikutusta systeemin dynamiikkaan. Toisessa luvussa on johdettu spin-bosoni -mallille ei-Markovinen liikeyhtälö ja tarkasteltu spin-systeemin dynamiikkaa joissain erityistapauksissa. Kolmannessa luvussa on esitelty kvanttihyppymenetelmiä avointen systeemien dynamiikan ratkaisemiseksi ja sovellettu ei-Markovisten kvanttihyppyjen teoriaa spinbosoni -mallin tutkimiseksi. Ei-Markovisten kvanttihyppyjen teoriaa käyttämällä voidaan selittää spin-systeemin tiheysmatriisin populaatioissa ja koherensseissa havaittavien ei-Markovisten efektien alkuperä käännettyjen kvanttihyppyjen avulla. Tutkielman viimeisessä osassa esitellään muutamia spin-bosoni -mallin sovellutuksia fysiikan eri alueilta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kvanttimekaniikan teoriassa suljettuja, ympäristöstään eristettyjä systeemejä koskevat tulokset ovat hyvin tunnettuja. Eräs tärkeä erityispiirre tällaisille systeemeille on, että niiden aikakehitys on unitaarista. Oletus siitä, että systeemi on suljettu, on osaltaan tietysti vain yksinkertaistus. Käytännössä kaikki kvanttimekaaniset systeemit vuorovaikuttavat ympäristönsä kanssa ja tästä johtuen niiden dynamiikka monimutkaistuu oleellisesti. Kuitenkin tietyissä tapauksissa systeemin aikakehitys voidaan ratkaista, ainakin approksimatiivisesti. Tärkeimpinä esimerkkeinä on ympäristön joko nopea tai erittäin hidas muutos kvanttisysteemin ominaiseen aikaskaalaan verrattuna. Näistä erityisesti jälkimmäinen on käyttökelpoinen oletus monissa fysikaalisissa tilanteissa. Tällöin voidaan suorittaa niin sanottu adiabaattinen approksimaatio. Sen mukaan systeemi, joka on aikakehityksen generoivan Hamiltonin operaattorin ominaistilassa, pysyy vastaavassa ominaistilassa ympäristön muuttuessa äärettömän hitaasti, mikäli systeemin eri energiatasot eivät leikkaa toisiaan. Todellisissa tilanteissa muutos ei tietenkään voi olla äärettömän hidasta ja myös energiatasojen leikkaukset ovat mahdollisia, jolloin tapahtuu transitio eri ominaistilojen välillä. Energiatasojen leikkauksilla on oleellisia vaikutuksia erittäin monissa fysikaalisissa prosesseissa ja niitä kuvaamaan on luotu monia malleja kvanttimekaniikan alkuajoista lähtien aina tähän päivään saakka. Nykyinen teknologinen kehitys on avannut uudenlaisen mahdollisuuden ilmiön kokeelliseen varmentamiseen ja hyödyntämiseen. Tämän vuoksi kyseisten mallien dynamiikan ja erityisesti energiatasojen useiden peräkkäisten leikkausten aiheuttamien koherenssi-ilmiöiden selvittäminen on tärkeää. Tässä työssä käsitellään kvanttimekaanisia kaksitasosysteemejä, joissa esiintyy energiatasojen leikkauksia sekä niiden pitkän aikavälin dynamiikkaa. Tutkielmassa perehdytään tarkemmin kahteen tiettyyn malliin. Näistä ensimmäinen, Landau-Zener -malli, on tunnetuin ja sovelluksissa käytetyin malli. Kuitenkin erityisen mielenkiinnon kohteena on niin kutsuttu parabolinen malli, jolle johdetaan eri approksimaatioita käyttäen asymptoottiset transitiotodennäköisyydet eri tilojen välille. Näitä verrataan numeerisiin tuloksiin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis contains dynamical analysis on four different scales: the Solar system, the Sun itself, the Solar neighbourhood, and the central region of the Milky Way galaxy. All of these topics have been handled through methods of potential theory and statistics. The central topic of the thesis is the orbits of stars in the Milky Way. An introduction into the general structure of the Milky Way is presented, with an emphasis on the evolution of the observed value for the scale-length of the Milky Way disc and the observations of two separate bars in the Milky Way. The basics of potential theory are also presented, as well as a developed potential model for the Milky Way. An implementation of the backwards restricted integration method is shown, rounding off the basic principles used in the dynamical studies of this thesis. The thesis looks at the orbit of the Sun, and its impact on the Oort cloud comets (Paper IV), showing that there is a clear link between these two dynamical systems. The statistical atypicalness of the orbit of the Sun is questioned (Paper I), concluding that there is some statistical typicalness to the orbit of the Sun, although it is not very significant. This does depend slightly on whether one includes a bar, or not, as a bar has a clear effect on the dynamical features seen in the Solar neighbourhood (Paper III). This method can be used to find the possible properties of a bar. Finally, we look at the effect of a bar on a statistical system in the Milky Way, seeing that there are not only interesting effects depending on the mass and size of the bar, but also how bars can capture disc stars (Paper II).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this dissertation is to examine the dynamics of the socio-technical system in the field of ageing. The study stems from the notion that the ageing of the population as a powerful megatrend has wide societal effects, and is not just a matter for the social and health sector. The central topic in the study is change: not only the age structures and structures of society are changing, but also at the same time there is constant development, for instance, in technologies, infrastructures and cultural perceptions. The changing concept of innovation has widened the understanding of innovations related to ageing from medical and assistive technological innovations to service and social innovations, as well as systemic innovations at different levels, which means the intertwined and co-evolutionary change in technologies, structures, services and thinking models. By the same token, the perceptions of older people and old age are becoming more multi-faceted: old age is no longer equated to illnesses and decline, but visions of active ageing and a third age have emerged, which are framed by choices, opportunities, resources and consumption in later life. The research task in this study is to open up the processes and mechanisms of change in the field of ageing, which are studied as a complex, multi-level and interrelated socio-technical system. The question is about co-effective elements consisting of macro-level landscape changes, the existing socio-technical regime (the rule system, practices and structures) and bottom-up niche-innovations. Societal transitions do not account for the things inside the regime alone, or for the long-term changes in the landscape, nor for the radical innovations, but for the interplay between all these levels. The research problem is studied through five research articles, which offer micro-level case studies to macro-level phenomenon. Each of the articles focus on different aspects related to ageing and change, and utilise various datasets. The framework of this study leans on the studies of socio-technical systems and multi-level perspective on transitions mainly developed by Frank Geels. Essential factors in transition from one socio-technological regime to another are the co-evolutionary processes between landscape changes, regime level and experimental niches. Landscape level changes, like the ageing of the population, destabilise the regime in the forms of coming pressures. This destabilization offers windows for opportunity to niche-innovations outside or at fringe of the regime, which, through their breakthrough, accelerate the transition process. However, the change is not easy because of various kinds of lock-ins and inertia, which tend to maintain the stability of the regime. In this dissertation, a constructionist approach of society is applied leaning mainly to the ideas of Anthony Giddens’ theory of structuration, with the dual nature of structures. The change is taking place in the interplay between actors and structures: structures shape people’s practices, but at the same time these practices constitute and reproduce social systems. Technology and other material aspects, as part of socio-technical systems, and the use of them, also take part in the structuration process. The findings of the study point out that co-evolutionary and co-effective relationships between economic, cultural, technological and institutional fields, as well as relationships between landscape changes, changes in the local and regime-level practices and rule systems, are a very complex and multi-level dynamic socio-technical phenomenon. At the landscape level of ageing, which creates the pressures and triggers to the regime change, there are three remarkable megatrends: demographic change, changes in the global economy and the development of technologies. These exert pressures to the socio-technical regime, which as a rule system is experiencing changes in the form of new markets and consumer habits, new ways of perceiving ageing, new models of organising the health care and other services and as new ways of considering innovation and innovativeness. There are also inner dynamics in the relationships between these aspects within the regime. These are interrelated and coconstructed: the prevailing perceptions of ageing and innovation, for instance, reflect the ageing policies, innovation policies, societal structures, organising models, technology and scientific discussion, and vice versa. Technology is part of the inner dynamics of the sociotechnological regime. Physical properties of the artefacts set limitations and opportunities with regard to their functions and uses. The use of and discussion about technology, contributes producing and reproducing the perceptions of old age. For societal transition, micro-level changes are also needed, in form of niche-innovations, for instance new services, organisational models or new technologies, Regimes, as stabilitystriven systems, tend to generate incremental innovations, but radically new innovations are generated in experimental niches protected from ‘normal’ market selection. The windows of opportunity for radical novelties may be opened if the circumstances are favourable for instance by tensions in the socio-technical regime affected by landscape level changes. This dissertation indicates that a change is taking place, firstly, in the dynamic interactionbetween levels, as a result of purposive action and governance to some extent. Breaking the inertia and using the window of opportunity for change and innovation offered by dynamics between levels, presupposes the actors’ special capabilities and actions such as dynamic capabilities and distance management. Secondly, the change is taking place the socio-technological negotiations inside the regime: interaction between technological and social, which is embodied in the use of technology. The use of technology includes small-level contextual scripts that also participate in forming broader societal scripts (for instance defining old age at the society level), which in their turn affect the formation of policies for innovation and ageing. Thirdly, the change is taking place by the means of active formation of the multi-actor innovation networks, where the role of distance management is crucial to facilitate the communication between actors coming from different backgrounds as well as to help the niches born outside the regime to utilise the window of opportunity offered by regime destabilisation. This dissertation has both theoretical and practical contributions. This study participates in the discussion of action-oriented view on transition by opening up of the socio-technological, coevolutionary processes of the multi-faceted phenomenon of ageing, which has lacked systematic analyses. The focus of this study, however, is not on the large-scale coordination and governance, but rather on opening up the incremental elements and structuration processes, which contribute to the transition little by little, and which can be affected to. This increases the practical importance of this dissertation, by highlighting the importance of very tiny, everyday elements in the change processes in the long run.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whenever a spacecraft is launched it is essential that the algorithms in the on-board software systems and at ground control are efficient and reliable over extended periods of time. Geometric numerical integrators, and in particular variational integrators, have both these characteristics. In "Numerics of Spacecraft Dynamics" new numerical integrators are presented and analysed in depth. These algorithms have been designed specifically for the dynamics of spacecraft and artificial satellites in Earth orbits. Full analytical solutions to a class of integrable deformations of the two-body problem in classical mechanics are derived, and a systematic method to compute variational integrators to arbitrary order with a computer algebra system is introduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For decades researchers have been trying to build models that would help understand price performance in financial markets and, therefore, to be able to forecast future prices. However, any econometric approaches have notoriously failed in predicting extreme events in markets. At the end of 20th century, market specialists started to admit that the reasons for economy meltdowns may originate as much in rational actions of traders as in human psychology. The latter forces have been described as trading biases, also known as animal spirits. This study aims at expressing in mathematical form some of the basic trading biases as well as the idea of market momentum and, therefore, reconstructing the dynamics of prices in financial markets. It is proposed through a novel family of models originating in population and fluid dynamics, applied to an electricity spot price time series. The main goal of this work is to investigate via numerical solutions how well theequations succeed in reproducing the real market time series properties, especially those that seemingly contradict standard assumptions of neoclassical economic theory, in particular the Efficient Market Hypothesis. The results show that the proposed model is able to generate price realizations that closely reproduce the behaviour and statistics of the original electricity spot price. That is achieved in all price levels, from small and medium-range variations to price spikes. The latter were generated from price dynamics and market momentum, without superimposing jump processes in the model. In the light of the presented results, it seems that the latest assumptions about human psychology and market momentum ruling market dynamics may be true. Therefore, other commodity markets should be analyzed with this model as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to simulate blood flow in thoracic human aorta and understand the role of flow dynamics in the initialization and localization of atherosclerotic plaque in human thoracic aorta. The blood flow dynamics in idealized and realistic models of human thoracic aorta were numerically simulated in three idealized and two realistic thoracic aorta models. The idealized models of thoracic aorta were reconstructed with measurements available from literature, and the realistic models of thoracic aorta were constructed by image processing Computed Tomographic (CT) images. The CT images were made available by South Karelia Central Hospital in Lappeenranta. The reconstruction of thoracic aorta consisted of operations, such as contrast adjustment, image segmentations, and 3D surface rendering. Additional design operations were performed to make the aorta model compatible for the numerical method based computer code. The image processing and design operations were performed with specialized medical image processing software. Pulsatile pressure and velocity boundary conditions were deployed as inlet boundary conditions. The blood flow was assumed homogeneous and incompressible. The blood was assumed to be a Newtonian fluid. The simulations with idealized models of thoracic aorta were carried out with Finite Element Method based computer code, while the simulations with realistic models of thoracic aorta were carried out with Finite Volume Method based computer code. Simulations were carried out for four cardiac cycles. The distribution of flow, pressure and Wall Shear Stress (WSS) observed during the fourth cardiac cycle were extensively analyzed. The aim of carrying out the simulations with idealized model was to get an estimate of flow dynamics in a realistic aorta model. The motive behind the choice of three aorta models with distinct features was to understand the dependence of flow dynamics on aorta anatomy. Highly disturbed and nonuniform distribution of velocity and WSS was observed in aortic arch, near brachiocephalic, left common artery, and left subclavian artery. On the other hand, the WSS profiles at the roots of branches show significant differences with geometry variation of aorta and branches. The comparison of instantaneous WSS profiles revealed that the model with straight branching arteries had relatively lower WSS compared to that in the aorta model with curved branches. In addition to this, significant differences were observed in the spatial and temporal profiles of WSS, flow, and pressure. The study with idealized model was extended to study blood flow in thoracic aorta under the effects of hypertension and hypotension. One of the idealized aorta models was modified along with the boundary conditions to mimic the thoracic aorta under the effects of hypertension and hypotension. The results of simulations with realistic models extracted from CT scans demonstrated more realistic flow dynamics than that in the idealized models. During systole, the velocity in ascending aorta was skewed towards the outer wall of aortic arch. The flow develops secondary flow patterns as it moves downstream towards aortic arch. Unlike idealized models, the distribution of flow was nonplanar and heavily guided by the artery anatomy. Flow cavitation was observed in the aorta model which was imaged giving longer branches. This could not be properly observed in the model with imaging containing a shorter length for aortic branches. The flow circulation was also observed in the inner wall of the aortic arch. However, during the diastole, the flow profiles were almost flat and regular due the acceleration of flow at the inlet. The flow profiles were weakly turbulent during the flow reversal. The complex flow patterns caused a non-uniform distribution of WSS. High WSS was distributed at the junction of branches and aortic arch. Low WSS was distributed at the proximal part of the junction, while intermedium WSS was distributed in the distal part of the junction. The pulsatile nature of the inflow caused oscillating WSS at the branch entry region and inner curvature of aortic arch. Based on the WSS distribution in the realistic model, one of the aorta models was altered to induce artificial atherosclerotic plaque at the branch entry region and inner curvature of aortic arch. Atherosclerotic plaque causing 50% blockage of lumen was introduced in brachiocephalic artery, common carotid artery, left subclavian artery, and aortic arch. The aim of this part of the study was first to study the effect of stenosis on flow and WSS distribution, understand the effect of shape of atherosclerotic plaque on flow and WSS distribution, and finally to investigate the effect of lumen blockage severity on flow and WSS distributions. The results revealed that the distribution of WSS is significantly affected by plaque with mere 50% stenosis. The asymmetric shape of stenosis causes higher WSS in branching arteries than in the cases with symmetric plaque. The flow dynamics within thoracic aorta models has been extensively studied and reported here. The effects of pressure and arterial anatomy on the flow dynamic were investigated. The distribution of complex flow and WSS is correlated with the localization of atherosclerosis. With the available results we can conclude that the thoracic aorta, with complex anatomy is the most vulnerable artery for the localization and development of atherosclerosis. The flow dynamics and arterial anatomy play a role in the localization of atherosclerosis. The patient specific image based models can be used to diagnose the locations in the aorta vulnerable to the development of arterial diseases such as atherosclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.