43 resultados para CHP
Resumo:
Tässä diplomityössä on määritetty paluuvesilämmityksen mahdollisuudet Savon Voima Oyj:n kaukolämpöpaikkakunnilla. Työssä tarkasteltiin paluuvesilämmityksen tuoman paremman kaukolämpöveden jäähtymän vaikutuksia kaukolämpöverkkoon ja energiantuotantoon sekä laskettiin esimerkkipaikkakunnilla kaukolämmön paluuveden lämpötilan alentumisen tuomat rahalliset hyödyt. Lisäksi tarkasteltiin paluuvesilämmityksen taloudellisuutta esimerkkipaikkakunnilla. Laskennassa saatiin paluuvesilämmityksen tuomaksi jäähtymähyödyksi pumppauskustannuksissa 0,7 – 0,8 €/MWh ja lämpöhäviöissä 1,5 – 2,9 €/MWh. Iisalmessa sähköntuotannon lisääntymisestä saadaan hyötyä 0,7 €/MWh. Suurin hyöty saadaan Pielaveden ja Suonenjoen biolämpökeskusten lämmöntalteenotolla varustetuista savukaasupesureista. Pielavedellä tämä hyöty on 6,4 €/MWh ja Suonenjoella 6,1 €/MWh. Paluuvesilämmityksen kannattavuus asuinkiinteistöissä vaatii lämmöntuotannon yhteydessä olevan savukaasupesurin tuoman rahallisen hyödyn. Esimerkiksi Iisalmessa asiakkaalle myönnettävissä oleva jäähtymähyvitys paluuvesilämmöstä ei riitä kattamaan paluuvesilämmityksen suurempia investointikuluja. Myös pesuripaikkakunnilla kannattavuus vaatii suuren vuosittaisen lämmönkäytön. Tavoiteltaessa 8 vuoden korollista takaisinmaksuaikaa vaatii kannattavuus kohteelta Pielavedellä 250 MWh:n ja Suonejoella 300 MWh:n vuosittaisen lämmönkäytön. Myös asiakkaan sijainnin sopivuus kaukolämpöverkossa paluuvesilämmitykseen täytyy tarkastella tapauskohtaisesti. Paluuvesilämmitys ei tule työn tulosten perusteella tulevaisuudessa yleisesti käyttöön, mutta yksittäisiä asiakkaita siihen voidaan liittää.
Resumo:
Tässä diplomityössä määritellään biopolttoainetta käyttävän voimalaitoksen käytönaikainen tuotannon optimointimenetelmä. Määrittelytyö liittyy MW Powerin MultiPower CHP –voimalaitoskonseptin jatkokehitysprojektiin. Erilaisten olemassa olevien optimointitapojen joukosta valitaan tarkoitukseen sopiva, laitosmalliin ja kustannusfunktioon perustuva menetelmä, jonka tulokset viedään automaatiojärjestelmään PID-säätimien asetusarvojen muodossa. Prosessin mittaustulosten avulla lasketaan laitoksen energia- ja massataseet, joiden tuloksia käytetään seuraavan optimointihetken lähtötietoina. Optimoinnin kohdefunktio on kustannusfunktio, jonka termit ovat voimalaitoksen käytöstä aiheutuvia tuottoja ja kustannuksia. Prosessia optimoidaan säätimille annetut raja-arvot huomioiden niin, että kokonaiskate maksimoituu. Kun laitokselle kertyy käyttöikää ja historiadataa, voidaan prosessin optimointia nopeuttaa hakemalla tilastollisesti historiadatasta nykytilanteen olosuhteita vastaava hetki. Kyseisen historian hetken katetta verrataan kustannusfunktion optimoinnista saatuun katteeseen. Paremman katteen antavan menetelmän laskemat asetusarvot otetaan käyttöön prosessin ohjausta varten. Mikäli kustannusfunktion laskenta eikä historiadatan perusteella tehty haku anna paranevaa katetta, niiden laskemia asetusarvoja ei oteta käyttöön. Sen sijaan optimia aletaan hakea deterministisellä optimointialgoritmilla, joka hakee nykyhetken ympäristöstä paremman katteen antavia säätimien asetusarvoja. Säätöjärjestelmä on mahdollista toteuttaa myös tulevaisuutta ennustavana. Työn käytännön osuudessa voimalaitosmalli luodaan kahden eri mallinnusohjelman avulla, joista toisella kuvataan kattilan ja toisella voimalaitosprosessin toimintaa. Mallinnuksen tuloksena saatuja prosessiarvoja hyödynnetään lähtötietoina käyttökatteen laskennassa. Kate lasketaan kustannusfunktion perusteella. Tuotoista suurimmat liittyvät sähkön ja lämmön myyntiin sekä tuotantotukeen, ja suurimmat kustannukset liittyvät investoinnin takaisinmaksuun ja polttoaineen ostoon. Kustannusfunktiolle tehdään herkkyystarkastelu, jossa seurataan katteen muutosta prosessin teknisiä arvoja muutettaessa. Tuloksia vertaillaan referenssivoimalaitoksella suoritettujen verifiointimittausten tuloksiin, ja havaitaan, että tulokset eivät ole täysin yhteneviä. Erot johtuvat sekä mallinnuksen puutteista että mittausten lyhyehköistä tarkasteluajoista. Automatisoidun optimointijärjestelmän käytännön toteutusta alustetaan määrittelemällä käyttöön otettava optimointitapa, siihen liittyvät säätöpiirit ja tarvittavat lähtötiedot. Projektia tullaan jatkamaan järjestelmän ohjelmoinnilla, testauksella ja virityksellä todellisessa voimalaitosympäristössä ja myöhemmin ennustavan säädön toteuttamisella.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
Kandidaatintyön tarkoituksena oli perehtyä puubiomassan kaasutukseen perustuvaan hajautettuun energiantuotantoon. Työssä tarkasteltiin erilaisia kaasutustekniikoita sekä pohdittiin pientuotannon kannattavuutta ja kaasutusalan kehitysnäkymiä kirjallisuusmateriaalin avulla. Työssä selvisi, että paras tämän hetken pienkaasutusvoimalasovellus koostuu myötävirtakaasuttimesta ja lisäksi joko polttomoottorista tai mikroturbiinista. Kaasutusvoimalan suurin etu hajautetussa energiantuotannossa on omavarainen sähkön- ja lämmöntuotanto. Lisäksi kirjallisuuden mukaan sähköntuotantohyötysuhde on parempi kaasutukseen perustuvassa sähköntuotannossa kuin suoraan polttoon perustuvassa sähköntuotannossa. Ongelmana kaasutuksessa ovat tuotekaasun epäpuhtaudet, etenkin terva ja tuhka, jotka likaavat ja vioittavat kaasuttimen ja sähköntuotantoyksikön osia. Alle 100 kWe:n laitoksissa tuotekaasun puhdistusyksikön investointikustannukset ovat merkittävä osa kokonaisinvestointia. Suomen markkinoillakin on jo saatavilla muutamia kaasutusvoimaloita esimerkiksi maatalouden käyttöön. Kiinnostusta kaasutusalalle on runsaasti ja kaasutusteknologiaa pyritään jatkuvasti kehittämään pilottihankkeiden avulla.
Resumo:
Työssä tarkasteltiin sähkö- ja lämpöenergian tuotantomenetelmien ympäristöllistä kilpailukykyä osana yhdyskunnan energiajärjestelmää. Sähkö- lämpöenergian tuotantomenetelmiä vertailtiin keskenään aiheutuvien kasvihuonekaasupäästöjen perusteella. Tarkastelu toteutettiin elinkaariarviointimenetelmällä. Työssä mallinnettiin pääasiassa uusiutuviin energialähteisiin perustuvia menetelmiä yhdyskunnan vuotuisen sähkö- ja lämpöenergiantarpeen täyttämiseksi. Elinkaariarviointimallin avulla vertailtiin keskenään aurinko- ja tuulisähköpainotteista ja CHP-painotteista energiajärjestelmää. Lisäksi työssä arvioitiin aurinko- ja tuulisähköntuotantoa sekä CHP-tuotantoa nettoenergianäkökulmasta. Työn tulosten pohjalta voidaan olettaa, että kokonaisvaltaisesti paras energianhankintavaihtoehto on usean eri sähkö- ja lämpöenergiantuotantomenetelmän yhdistelmä. Alhainen päästötaso tietyssä kategoriassa on yhdentekevää, jos energiaa ei ole saatavissa silloin, kun sitä tarvitaan. Lisäksi on tärkeää huomata, että uusiutuvien energialähteiden hyödynnettävyys riippuu vahvasti alueellisista erityispiirteistä, kuten aurinko- ja tuuliolosuhteista. Tästä johtuen kestävän energiajärjestelmän suunnittelussa alueellisten ominaisuuksien huomiointi on tärkeää. Mikä tietyllä alueella osoittautuu parhaimmaksi ratkaisuksi, ei välttämättä ole sitä toisenlaisessa ympäristössä.
Resumo:
Tavoitteet energiatehokkuuden parantamisesta ja energiantuotannon ympäristövaikutusten vähentämisestä ovat nostaneet kiinnostusta hajautettua energiantuotantoa kohtaan. Pienissä kokoluokissa ei kuitenkaan sähköntuottaminen ole kannattavaa perinteisillä menetelmillä kuten vesihöyryprosessilla. Mikrokokoluokassa (alle 50 kWe) yksi varteenotettavimmista keinoista sähköntuotantoon on mikro ORC-prosessi. Tässä kandidaatintyössä on tavoitteena löytää mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ja ratkaisuja niiden hyödyntämiseen. Selvitystyön perusteella mikro ORC-voimaloiden potentiaalisimpia sovelluskohteita ovat hukkalämpöjen hyödyntäminen teollisuus- ja energiantuotantoprosesseissa, pienet CHP-laitokset, pienet lämpölaitokset, ajoneuvojen polttomoottorit, syrjäisten kohteiden sähköntuotanto sekä aurinkokeräimien ja kaukolämpöverkon hyödyntäminen rakennusten energiaomavaraisuuden parantamisessa.
Resumo:
Tämän diplomityön tarkoituksena on selvittää alueellisen lämmön- ja sähköntuotannon laskentamenetelmävalintojen vaikutuksia kasvihuonekaasupäästöihin. Työn tutkimuskysymyksenä on, onko mahdollista, että laskentamenetelmän valinnalla on suurempi vaikutus alueen kasvihuonekaasupäästöihin kuin energiantuotantotekniikan valinnalla. Laskentamenetelmävalinnoista tutkitaan tarkemmin CHP-laitoksen päästöjen allokointitavan ja sähkönpäästöjen määrittämisen vaikutuksia kasvihuonekaasupäästöihin. Tutkimusmenetelminä työssä on käytetty kirjallisuuskatsausta sekä tapaustutkimusta. Kirjallisuuskatsauksen aineistona käytetään tieteellisiä artikkeleita ja tutkimusraportteja. Tapaustutkimuksessa tutkitaan yksittäistä case-kohdetta, joka on Tampereen Härmälänrannan uudisrakennusalue, ja jossa vertaillaan maalämpöpumppua ja kaukolämpöä alueen lämmitysratkaisuina. Työn tuloksena todetaan, että on olemassa sellaisia tilanteita, joissa laskentamenetelmän valinnalla on suurempi vaikutus alueen kasvihuonekaasupäästöihin kuin energiantuotantotekniikan valinnalla. Lisäksi case-tarkastelun perusteella huomataan, että laskentamenetelmävalinnoilla on sitä suurempi merkitys, mitä enemmän CHP-laitoksessa käytetään uusiutuvaa polttoainetta. Työn johtopäätöksenä voidaan todeta, että energiantuotannon kasvihuonekaasupäästölaskennassa on syytä ymmärtää ja huomioida eri laskentamenetelmävalintojen vaikutus esitettyihin tuloksiin.
Resumo:
Globaali ilmaston lämpeneminen ja tunnettujen energiavarojen ehtyminen ovat lisääntyvässä määrin maailmanlaajuisia huolenaiheita. Tietoisuus kulutuksen kasvun ja fossiilisten polttoaineiden käytön aiheuttamasta ympäristönmuutoksesta on merkittävästi kasvanut, ja osana kestävää kehitystä Euroopan Unionin vuoden 2020 välitavoitteena on vähentää kasvihuonepäästöjä 20 prosentilla vuoden 1990 tasosta, parantaa energiatehokkuutta 20 prosentilla, ja lisätä uusiutuvien energialähteiden osuus 20 prosenttiin. Suomen sitovaksi tavoitteeksi EU on määritellyt uusiutuvan energian osuudeksi 38 % kokonaisenergian kulutuksesta vuoteen 2020 mennessä. Suomen tavoitetta voi pitää varsin haasteellisena ja näin ollen tavoitteiden saavuttaminen edellyttää myös, että Suomessa käyttöönotetaan monipuolisia energiatehokkuutta parantavia ja erilaista tuotantoteknologiaa hyödyntäviä ratkaisuja. Biopolttoaineita käyttävä pienen kokoluokan yhdistetty sähkön ja lämmön tuotanto (CHP) voi osaltaan tarjota yhden ratkaisun varmistaa kestävä kehitys. Hajautetusti toimivat kiinteää biopolttoainetta, kuten metsätähdehaketta esimerkiksi maatiloilla, kasvihuoneilla ja pkteollisuudessa käyttävät pien-CHP laitokset lisäävät energiaomavaraisuutta, työllisyyttä ja maaseudun elinvoimaa. Sähkön ja lämmön yhteistuotanto – hankekokonaisuus sisälsi kolme erillistä projektia; (1) Bio-CHP tutkimus- ja opetuslaboratorion kehittäminen, (2) Biovoima Innoverkko, ja (3) Sähkön ja lämmön yhteistuotanto biopolttoaineilla, alueellinen selvitys. Näissä projekteissa on (1) tutkittu, koekäytetty, testattu ja mallinnettu pienen kokoluokan (laitoksen polttoaineteho alle 3 MW) CHP-laitteistoa laboratorio-olosuhteissa, (2) koulutettu ja konsultoitu potentiaalisia asiakkaita, laitevalmistajia ja energiayrityksiä sekä (3) kartoitettu markkinapotentiaalia, potentiaalisia asiakkaita ja alan toimijoita sekä tehty esiselvityksiä käyttökohteiden kannattavuudesta. Hankekokonaisuuden yhteydessä Lappeenrannan teknillisessä yliopistossa laboratoriossa koekäytössä oleva CHPratkaisu perustuu Stirling-moottorin tai vaihtoehtoisesti mikroturbiinin käyttöön hakelämmityskattilalaitoksen yhteydessä. Kaupalliseen vaiheeseen edetessään pienen kokoluokan CHP-tuotanto voidaan arvioida kannattavaksi, koska sen avulla voidaan muun muassa saavuttaa kustannussäästöjä, vähentää päästöjä, ja lisätä sähköntuotannon omavaraisuutta sekä tukea alueellista työllisyyttä. Tässä hankkeessa (3) tutkittiin pienen kokoluokan hajautetun CHP-teknologian markkinapotentiaalia yleisesti Suomessa ja Kaakkois-Suomessa, tarkasteltiin alueellisia primäärienergialähteitä, ja tutkittiin laitetoimittajia, energiayrityksiä sekä niiden liiketoimintaverkostoja. Alueellisen selvityksen tueksi tutkittavia asioita tarkasteltiin osittain myös laajemmin muun muassa vertaisarvioinnin ja riittävän suuren otoskoon varmistamiseksi. Hankkeessa konsultoitiin potentiaalisia CHP-käyttökohteita ja tehtiin esiselvitykset kahdeksan kohteen teknis-taloudellisesta kannattavuudesta. Konsultoinneissa ja esiselvityksissä hyödynnettiin kehitettyä teknis-taloudellista laskentamallia. Hankkeen tulosten pohjalta laadittiin yleisohje soveltuvuusselvitysten tekemiseksi sekä suositus bioenergian alueelliseksi kehittämiseksi hajautetussa CHP-tuotannossa. Vuoden 2011 alussa voimaan tullut laki uusiutuvilla energialähteillä tuotetun sähkön tuotantotuesta on tarkoitettu tukemaan tuulivoimalla, biokaasulla ja puupolttoaineella tuotettua sähkön tuotantoa. Syöttötariffijärjestelmään hyväksytty sähkön tuottaja osallistuisi sähkömarkkinoille, ja tuottajalle maksettaisiin määräajan tukea markkinahinnan ja tuotantokustannusten välisen eron kattamiseksi. Jotta metsähakevoimala yleisten kelpoisuusehtojen täytyttyä voitaisiin hyväksyä syöttötariffin piiriin, pitää lisäksi laitoksen generaattoreiden nimellistehon olla vähintään 100 kW. Nykytekniikalla ja nykyisillä laitosten hyötysuhteilla tämä tarkoittaa sitä, että CHP-laitoksen kokonaistehon tulisi olla suuruusluokaltaan noin 500 kW. Näin ollen syöttötariffijärjestelmä ei kannusta pienimpiä laitoksia bioenergialla tuotetun sähkön myyntiin, ja näissä tapauksissa onkin arvioitava ainoastaan omakäyttösähkön merkitystä. Lämpö- ja CHP-laitosten polttoaineen hankintaketjua tuleva laki pienpuun energiatuesta (Petu) on hyväksytty eduskunnassa ja tulee voimaan asetuksella, mikäli Euroopan komissio hyväksyy uuden valtiontukijärjestelmän. Pienpuun energiatuki korvaa aiemmat Kemera-lain mukaiset korjuu- ja haketustuet. Tukea maksetaan nuoren metsän hoidon tai ensiharvennuksen yhteydessä saatavasta energiapuusta, mutta ei päätehakkuiden energiapuusta. Maa- ja puutarhataloudessa potentiaalisimpia käyttökohteita ovat suurehkot sika- ja siipikarjatilat, joiden lämmön ja sähkön kulutus on jo merkittävää. Kasvihuoneet ovat jo keskikokoisina huomattavia sähkön ja lämmön kuluttajia, ja siten potentiaalisia kohteita. Yleisesti tilojen määrän ennustetaan jo lähivuosien aikana vähenevän ja tilakoon kasvavan merkittävästi. Suurempi yksikkökoko luonnollisesti merkitsee mahdollisesti parantuneesta energiatehokkuudesta huolimatta yleensä suurempaa energian tarvetta ja siten potentiaalista kiinteää biomassaa käyttävää CHP-kohdetta. Pk-teollisuudessa luontevia käyttökohteita ovat esimerkiksi mekaanisen metsäteollisuuden laitokset sekä yleisestikin teollisuuskohteet, joiden energian kulutus on kohtalainen ja suhteellisen tasainen. Niin ikään suurehkot kiinteistöt, kuten esimerkiksi hotellit ja vanhainkodit, ovat potentiaalisia käyttökohteita. Olemassa olevat aluelämpölaitokset voivat ottaa CHP-teknologian käyttöön esimerkiksi laitoksen peruskorjauksen tai uusimisen yhteydessä. Kaiken kaikkiaan Kaakkois-Suomessa voidaan arvioida olevan maatiloilla, kasvihuoneissa, pk-teollisuudessa ja lämpölaitoksissa yhteensä useita kymmeniä potentiaalisia käyttökohteita. Arvioitaessa Kaakkois-Suomen kiinteitä bioenergiapotentiaaleja, keskeisin on metsäenergia, jonka teknistaloudellinen potentiaali on arvioitu olevan alle 2000 GWh, mitä voidaan pitää varsin konservatiivisena arviona. Peltoenergiapotentiaaliksi on arvioitu noin 400 GWh. Metsätähdehaketta kuljetetaan myös maakuntien välillä, vaikka kuljetusmatkat tulisi rajoittaa enintään 50–100 km etäisyydelle käyttöpaikasta kannattavuuden turvaamiseksi. Energiapuun voidaan arvioida riittävän pienen kokoluokan CHPteknologian lisääntyvään tarpeeseen, mutta alueellisesti polttoaineen saatavuuteen ja hintaan vaikuttavat olennaisesti esimerkiksi suurten CHP-laitosten mahdollisesti lisääntyvä metsähakkeen käyttö. Metsäteollisuuden ainespuun käytöllä on keskeinen rooli energiapuun saantoon. Lisäksi metsänomistajien todellinen halukkuus energiapuun myyntiin vaihtelee, ja esimerkiksi kantojen hyödyntäminen biopolttoaineena jakaa mielipiteitä. Hankkeessa tutkittiin ja haastateltiin 26 lämpöyritystä ja 26 lämpölaitostoimittajaa eri puolella Suomea sekä 19 potentiaalista CHP-laitevalmistajaa Kaakkois-Suomessa. Lämpöyrittäjyys on varsin paikallista toimintaa, joka on voimakkaasti kasvamassa. Lämpöyrittäjien hoitamia kohteita on Suomessa tällä hetkellä noin 450. Lämpölaitoksen ja lämpöverkon omistaa usein esimerkiksi kunta, ja lämpöyrittäjä hankkii polttoaineen, huolehtii laitoksen toiminnasta ja saa tuoton myydystä energiasta. Tyypillisesti lämpöyrityksellä ja –yrittäjällä on yhteistyötä paitsi polttoainetoimittajien ja asiakkaidensa kanssa, niin myös erilaisia huolto- ja muita palveluita tarjoavien tahojen, lämpölaitoksen kokonais- ja komponenttitoimittajien, ja muiden lämpöyrittäjien kanssa. Merkittävimmät laitevalmistajat ovat maantieteellisesti painottuneet Länsi- ja Etelä- Suomeen. Valmistajat ovat pääosin pk-yrityksiä, joista muutama on osa isompaa konsernia. Yritykset valmistavat tyypillisesti muun muassa lämpökattiloita, poltinteknologiaa, kuljettimia ja automaatiojärjestelmiä. Harva yritys valmistaa kaikki lämpölaitoksen komponentit itse, mutta useat kykenevät suunnittelemaan ja toimittamaan asiakkaille kokonaisia laitoksia avaimet käteen periaatteella liiketoimintaverkostojaan hyödyntäen. Laajimmillaan yritysten liiketoimintaverkostoihin voi kuulua asiakkaita, alihankkijoita, muita laitevalmistajia, kilpailijoita ja muita palveluiden tarjoajia. Kaakkois-Suomessa on huomattava yrityskanta konepaja-, automaatio-, hydrauliikka-, sähkö- ja LVI-yrityksiä, ja osa näistä yrityksistä on toiminut muun muassa metsäteollisuuden alihankkijoina. Metsäteollisuuden rakennemuutoksen myötä yritykset joutuvat osittain suuntaamaan liiketoimintaansa muualle, ja kyseisillä yrityksillä on perusosaamista ja kyvykkyyttä palvella energia-alaa, kuten esimerkiksi toimittaa komponentteja, laitteita tai palveluita CHP-laitostoimituksiin. Liiketoiminnan suuntaaminen uudelle toimialalle ja mahdollisten omien tuotteiden suunnittelu, valmistus ja markkinointi edellyttää kuitenkin merkittäviä panostuksia ja riskinsietokykyä. Kaiken kaikkiaan tutkitut lämpöyritykset, laitostoimittajat ja potentiaaliset laitetoimittajat suhtautuivat varovaisen positiivisesti pien-CHP:n tarjoamiin mahdollisuuksiin. Pien-CHP teknologian todettiin vielä vaativan kuitenkin kehittämistä, ja toisaalta yhteiskunnan tukitoimenpiteet nähtiin välttämättöminä, jotta bioenergiaa hyödyntävät pien-CHP ratkaisut voisivat yleistyä. Hankkeessa tutkittiin syvällisemmin erityyppisiä potentiaalisia bio-CHP kohteita, joista tehtiin esiselvitystasoiset soveltuvuus- ja kannattavuusarviot. Halukkuutta esiselvitysten tekemiseen olisi potentiaalisilta asiakkailta todennäköisesti löytynyt enemmän, mikäli bioenergiaa hyödyntävät pienen kokoluokan CHP-ratkaisut olisivat olleet lähempänä kaupallista sovellusta ja yhteiskunnan tukijärjestelmät bioenergialle valmiimpia sekä kattaneet paremmin myös pienen kokoluokan laitokset. Käyttökohteet olivat hyvin yksilöllisiä eikä niiden perusteella ollut mahdollista muodostaa yleispätevää mallia soveltuvuuden ja kannattavuuden arvioimiseksi. Teknologisten ratkaisujen vielä kehittyessä tarkkoja arvioita laitekustannuksista ei niin ikään ollut mahdollista esittää. Voidaan kuitenkin arvioida, että laitehinnat tulevat merkittävästi alenemaan kaupallisten ratkaisujen yleistyessä. Käyttökohteen kannattavuutta eivät itsestään selvästi turvaa myöskään yhteiskunnan tukijärjestelmät, vaikka laitos kuuluisikin kyseisten tukien piiriin. Olennaista investoinnin kannattavuuden kannalta on riittävän iso ja tasainen sähkön ja lämmön kulutus käyttökohteessa sekä polttoaineen ja energiahintojen tuleva kehitys. Kiinteitä biopolttoaineita kuten metsähaketta käyttävä pienen kokoluokan hajautettu CHP-teknologia on vielä kehittymässä, ja mennee vielä muutama vuosi ennen kuin kaupalliset ratkaisut yleistyvät merkittävästi. Yhteiskunnan tukimuodot kuten esimerkiksi syöttötariffijärjestelmä eivät niin ikään parhaalla mahdollisella tavalla tue kaikkein pienimmän kokoluokan CHP-investointeja. Pien-CHP ratkaisujen kaupallistumisen myötä Kaakkois-Suomella on yhtäläiset mahdollisuudet yhdessä muun Suomen kanssa kehittyä hajautetun bioenergian entistä kokonaisvaltaisemmaksi hyödyntäjäksi Avainsanat: sähkön ja lämmön yhteistuotanto, combined heat and power (CHP), mikroturbiini, stirling, syöttötariffi, biopolttoaine, metsähake, lämpöyrittäjä, lämpölaitosvalmistaja, maatila
Resumo:
The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.
Resumo:
The purpose of this Thesis is to find the most optimal heat recovery solution for Wärtsilä’s dynamic district heating power plant considering Germany energy markets as in Germany government pays subsidies for CHP plants in order to increase its share of domestic power production to 25 % by 2020. Different heat recovery connections have been simulated dozens to be able to determine the most efficient heat recovery connections. The purpose is also to study feasibility of different heat recovery connections in the dynamic district heating power plant in the Germany markets thus taking into consideration the day ahead electricity prices, district heating network temperatures and CHP subsidies accordingly. The auxiliary cooling, dynamical operation and cost efficiency of the power plant is also investigated.
Resumo:
The main goal of this work is to clarify the idea of two thermochemical conversion processes of biomass - pyrolysis and torrefaction and to identify possible ways how and where exactly these processes can be integrated. Integration into CHP power plant process was chosen as one of the most promising ways. Multiple product development was determined by means of this integration concept. The analysis of the possible pros and cons was made based on some experimental data collected from the previous studies related to the topic of my work. In addition, one real integrated case was represented in the last part of the work. Finally, to highlight the main idea brief summarizing was done.
Resumo:
This thesis is done as a part of the NEOCARBON project. The aim of NEOCARBON project is to study a fully renewable energy system utilizing Power-to-Gas or Power-to-Liquid technology for energy storage. Power-to-Gas consists of two main operations: Hydrogen production via electrolysis and methane production via methanation. Methanation requires carbon dioxide and hydrogen as a raw material. This thesis studies the potential carbon dioxide sources within Finland. The different sources are ranked using the cost and energy penalty of the carbon capture, carbon biogenity and compatibility with Power-to-Gas. It can be concluded that in Finland there exists enough CO2 point sources to provide national PtG system with sufficient amounts of carbon. Pulp and paper industry is single largest producer of biogenic CO2 in Finland. It is possible to obtain single unit capable of grid balancing operations and energy transformations via Power-to-Gas and Gas-to-Power by coupling biogas plants with biomethanation and CHP units.
Resumo:
There is a growing trend towards decentralized electricity and heat production throughout the world. Reciprocating engines and gas turbines have an essential role in the global decentralized energy markets and any improvement in their electrical efficiency has a significant impact from the environmental and economic viewpoints. This paper introduces an inter-cooled and recuperated two-shaft microturbine at 500 kW electric output range. The microturbine is optimized for a realistic combination of the turbine inlet temperature, the recuperation rate and the pressure ratio. The new microturbine design aims to achieve significantly increased performance within the range of microturbines and even competing with the efficiencies achieved in large industrial gas turbines. The simulated electrical efficiency is 45%. Improving the efficiency of combined heat and power (CHP) systems will significantly decrease the emissions and operating costs of decentralized heat and electricity production. Cost-effective, compact and environmentally friendly micro-and small-scale CHP turbine systems with high electrical efficiency will have an opportunity to successfully compete against reciprocating engines, which today are used in heat and power generation all over the world and manufactured in large production series. This paper presents a small-scale gas turbine process, capable of competing with reciprocating engine in terms of electrical efficiency.