33 resultados para CATIONIC SURFACTANT


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing use of energy, food, and materials by the growing population in the world is leading to the situation where alternative solutions from renewable carbon resources are sought after. The growing use of plastics depends on the raw-oil production while oil refining are politically governed and required for the polymer manufacturing is not sustainable in terms of carbon footprint. The amount of packaging is also increasing. Packaging is not only utilising cardboard and paper, but also plastics. The synthetic petroleum-derived plastics and inner-coatings in food packaging can be substituted with polymeric material from the renewable resources. The trees in Finnish forests constitute a huge resource, which ought to be utilised more effectively than it is today. One underutilised component of the forests is the wood-derived hemicelluloses, although Spruce Oacetyl-galactoglucomannans (GGMs) have previously shown high potential for material applications and can be recovered in large scale. Hemicelluloses are hydrophilic in their native state, which restrains the use of them for food packaging as non-dry item. To cope with this challenge, we intended to make GGMs more hydrophobic or amphiphilic by chemical grafting and consequently with the focus of using them for barrier applications. Methods of esterification with anhydrides and cationic etherification with a trimethyl ammonium moiety were established. A method of controlled synthesis to obtain the desired properties by the means of altering temperature, reaction time, the quantity of the reagent, and even the solvent for purification of the products was developed. Numerous analytical tools, such as NMR, FTIR, SEC-MALLS/RI, MALDI-TOF-MS, RP-HPLC and polyelectrolyte titration were used to evaluate the products from different perspectives and to acquire parallel proofs of their chemical structure. Modified GGMs with different degree of substitution and the correlating level of hydrophobicity was applied as coatings on cartonboard and on nanofibrillated cellulose-GGM films to exhibit barrier functionality. The water dispersibility in processing was maintained with GGM esters with low DS. The use of chemically functionalised GGM was evaluated for the use as barriers against water, oxygen and grease for the food packaging purposes. The results show undoubtedly that GGM derivatives exhibit high potential to function as a barrier material in food packaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lysinuric protein intolerance (LPI) is a recessively inherited disorder characterised by reduced plasma and increased urinary levels of cationic amino acids (CAAs), protein malnutrition, growth failure and hyperlipidemia. Some patients develop severe immunological, renal and pulmonary complications. All Finnish patients share the same LPIFin mutation in the SLC7A7 gene that encodes CAA transporter y+LAT1. The aim of this study was to examine molecular factors contributing to the various symptoms, systemic metabolic and lipid profiles, and innate immune responses in LPI. The transcriptomes, metabolomes and lipidomes were analysed in whole-blood cells and plasma using RNA microarrays and gas or liquid chromatography-mass spectrometry techniques, respectively. Toll-like receptor (TLR) signalling in monocyte-derived macrophages exposed to pathogens was scrutinised using qRT-PCR and the Luminex technology. Altered levels of transcripts participating in amino acid transport, immune responses, apoptosis and pathways of hepatic and renal metabolism were identified in the LPI whole-blood cells. The patients had increased non-essential amino acid, triacylglycerol and fatty acid levels, and decreased plasma levels of phosphatidylcholines and practically all essential amino acids. In addition, elevated plasma levels of eight metabolites, long-chain triacylglycerols, two chemoattractant chemokines and nitric oxide correlated with the reduced glomerular function in the patients with kidney disease. Accordingly, it can be hypothesised that the patients have increased autophagy, inflammation, oxidative stress and apoptosis, leading to hepatic steatosis, uremic toxicity and altered intestinal microbe metabolism. Furthermore, the LPI macrophages showed disruption in the TLR2/1, TLR4 and TLR9 pathways, suggesting innate immune dysfunctions with an excessive response to bacterial infections but a deficient viral DNA response.