48 resultados para Assisted reproductive technologies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The iron ore pelletizing process consumes high amounts of energy, including nonrenewable sources, such as natural gas. Due to fossil fuels scarcity and increasing concerns regarding sustainability and global warming, at least partial substitution by renewable energy seems inevitable. Gasification projects are being successfully developed in Northern Europe, and large-scale circulating fluidized bed biomass gasifiers have been commissioned in e.g. Finland. As Brazil has abundant biomass resources, biomass gasification is a promising technology in the near future. Biomasses can be converted into product gas through gasification. This work compares different technologies, e.g. air, oxygen and steam gasification, focusing on the use of the product gas in the indurating machine. The use of biosynthetic natural gas is also evaluated. Main parameters utilized to assess the suitability of product gas were adiabatic flame temperature and volumetric flow rate. It was found that low energy content product gas could be utilized in the traveling grate, but it would require burner’s to be changed. On the other hand, bio-SGN could be utilized without any adaptions. Economical assessment showed that all gasification plants are feasible for sizes greater than 60 MW. Bio-SNG production is still more expensive than natural gas in any case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work is to perform an in-depth overview on the sustainability of several major commercialized technologies for water desalination and to identify the challenges and propose suggestions for the development of water desalination technologies. The overview of those technologies mainly focuses on the sustainability from the viewpoint of total capital investment, total product cost, energy consumption and global warming index. Additionally, a systematic sustainability assessment methodology has been introduced to validate the assessment process. Conclusions are:1) Reverse osmosis desalination (RO) plants are better than multi-stage flash distillation (MSF) desalination plants and multiple-effect distillation (MED) desalination plants from the viewpoint of energy consumption, global warming index and total production cost; 2)Though energy intensive, MSF plants and MED plants secure their advantages over RO plants by lower total capital investment, wider applicability and purer water desalted and they are still likely to flourish in energy-rich area;3) Water production stage and wastewater disposal stage are the two stages during which most pollutant gases are emitted. The water production stage alone contributes approximately 80~90% of the total pollutant gases emission during its life cycle; 4)The total capital cost per m3 desalted water decreases remarkably with the increasing of plant capacity. The differences between the capital cost per m3 desalted water of RO and other desalination plants will decrease as the capacity increases; 5) It is found that utilities costs serve as the major part of the total product cost, and they account for 91.16%, 85.55% and 71.26% of the total product cost for MSF, MED and RO plants, respectively; 6) The absolute superiority of given technology depends on the actual social-economic situation (energy prices, social policies, technology advancements).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tutkielman tavoitteena on tutkia, miten sähköisen taloushallinnon kehitys on vaikuttanut tilintarkastukseen ja miten se näkyy ammattilehtien kirjoittelussa vuosina 2003-2013. Alatavoitteina tutkitaan, mitä sähköisen taloushallinnon kehityksen tuomia hyötyjä ja haasteita on havaittu tarkastellussa suomalaisessa sekä kansainvälisessä ammattilehtikirjoittelussa tilintarkastuksen näkökulmasta. Kyseessä on laadullinen tutkimus ja tutkimusmetodologiana käytetään sisällönanalyysia. Tietokoneavusteisten tilintarkastuksen tekniikoiden kehityksen seurauksena tekniikoita voidaan kehittää kohti jatkuvaa tilintarkastusta. Kannettavien tietokoneiden ja pilvipalveluiden seurauksena tilintarkastuksesta on tullut enemmän ajasta ja paikasta riippumatonta. XBRL:n avulla tietojen vertailtavuus, luotettavuus ja tarkkuus ovat parantuneet. Haasteina voidaan nähdä tilintarkastajien IT-taitojen kehittämisen tarve sekä asiakkaan ja tilintarkastusyhteisön tietojärjestelmien yhteensopivuus. Hyvätkin ohjelmistot voivat altistaa väärinkäytöksille, jolloin tarvitaan uusia innovatiivisia tekniikoita väärinkäytösten havaitsemiseen. Tutkielman empiirisen osion luotettavuus perustuu ammattilehtien artikkeleiden kirjoittajien näkökulmiin. Tilintarkastusalan kehittyminen tulevaisuudessa on kiinni kehittyvän tekniikan lisäksi asenteista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to obtain a better understanding of behaviour of possible ultrasound appliance on fluid media mixing. The research is done in the regard to Newtonian and non-Newtonian fluids. The process of ultrasound appliance on liquids is modelled in COMSOL Multiphysics software. The influence of ultrasound using is introduced as waveform equation. Turbulence modelling is fulfilled by the k-ε model in Newtonian fluid. The modeling of ultrasound assisted mixing in non-Newtonian fluids is based on the power law. To verify modelling results two practical methods are used: Particle Image Velocimetry and measurements of mixing time. Particle Image Velocimetry allows capturing of velocity flow field continuously and presents detailed depiction of liquid dynamics. The second way of verification is the comparison of mixing time of homogeneity. Experimentally achievement of mixing time is done by conductivity measurements. In modelling part mixing time is achieved by special module of COMSOL Multiphysics – the transport of diluted species. Both practical and modelling parts show similar radial mechanism of fluid flow under ultrasound appliance – from the horn tip fluid moves to the bottom and along the walls goes back. Velocity profiles are similar in modelling and experimental part in the case of Newtonian fluid. In the case of non-Newtonian fluid velocity profiles do not agree. The development track of ultrasound-assisted mixing modelling is presented in the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study introduce two pretreatment technologies which are torrefaction and steam explosion, and compare energy balance for both technologies to investigate and compare the use of these technologies to improve pelletization. In this research, torrefaction and steam explosion pretreatments were accomplished on the mixed small diameter wood (70%) with moisture content of 40 %, and logging residues (30%) with moisture content of 45 % at temperature 230 ̊C, and treatment duration 10 min. Competing methods were evaluated, and the results showed higher volumetric energy for steam explosion pellet than torrefied pellet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method. The literature part deals with properties of different TiO2 crystal forms, principles of photocatalysis, sol-gel method and pulsed electric field processing. It was expected that the pulsed electric field would have an influence on crystallite size, specific surface area, polymorphism and photocatalytic activity of produced particles. TiO2 samples were prepared by using different frequencies and treatment times of pulsed electric field. The properties of produced TiO2 particles were examined X-ray diffraction (XRD), Raman spectroscopy and BET surface area analysis. The photocatalytic activities of produced TiO2 particles were determined by using them as photocatalysts for the degradation of formic acid under UVA-light. The photocatalytic activities of samples produced with sol-gel method were also compared with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH). Pulsed electric field did not have an effect on the morphology of particles. Results from XRD and Raman analysis showed that all produced TiO2 samples were pure anatase. However, pulsed electric field did have an effect on crystallite size, specific surface area and photocatalytic activity of TiO2 particles. Generally, the crystallite sizes were smaller, specific surface areas larger and initial formic acid degradation rates higher for samples that were produced by applying the pulsed electric field. The higher photocatalytic activities were attributed to larger surface areas and smaller crystallite sizes. Though, with all of the TiO2 samples produced by the sol-gel method the initial formic acid degradation rates were significantly slower than with the commercial TiO2 powder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Työssä tutkittiin mahdollisuutta tehostaa kunnallista jätevedenpuhdistusta membraanitekniikkaa käyttäen. Teoriaosassa perehdyttiin kunnallisen jäteveden omi-naisuuksiin ja perinteiseen puhdistusprosessiin. Tämän lisäksi membraanien yleisiä ominaisuuksia, membraanityyppien kykyä erottaa jäteveden sisältämiä yhdisteitä sekä erilaisia mahdollisuuksia membraanisuodatukselle perinteisen jäteve-denpuhdistusprosessin yhteydessä käytiin läpi. Kokeellisessa osassa keskityttiin Savitaipaleen puhdistamon puhdistetun jäteveden laadun parantamiseen membraanisuodatukseen perustuvalla jälkikäsittely-yksiköllä eli tertiäärisuodatuksella. Erilaisia paineavusteisia membraanitekniikoita (MF, UF, NF ja RO) tutkittiin jäteveden puhdistamiseksi ja erotustehokkuuden vertailemiseksi. Tavoitteena oli löytää tehokas ja käytännössä toimiva tapa poistaa fosforia ja typpeä puhdistetusta jätevedestä. Tasomaisilla membraaneilla tehdyissä suodatuksissa MF-membraanit poistivat tehokkaasti fosforia (97 – 98 %) sekä kiintoainesta (100 %) jätevedestä. RO-membraanit alensivat fosfori- (100 %) ja typpipitoisuutta (90 – 94 %) tehokkaasti, poistaen myös liuenneita orgaanisia yhdisteitä (DOC, 90 – 94 %). Mikrosuodatukseen perustuvilla onttokuitumembraaneilla saavutettiin tehokkaan fosforinpoiston lisäksi tasainen kapasiteetti suodatuksen aikaista puhdistusmene-telmää optimoimalla. Pitoisuusalenemat olivat myös erittäin korkeita fosforille (97 – 99 %), kiintoaineelle (100 %), sameudelle (96 – 99 %) sekä COD:lle (38 – 55 %). Tulosten perusteella membraanitekniikkaan perustuva onttokuitusuodatus olisi tehokas ja toimiva jälkikäsittelyprosessi fosforinpoistoon ja jäteveden laadun pa-rantamiseen. Typen poistamiseen parhaiten toimi RO-membraani.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human activity recognition in everyday environments is a critical, but challenging task in Ambient Intelligence applications to achieve proper Ambient Assisted Living, and key challenges still remain to be dealt with to realize robust methods. One of the major limitations of the Ambient Intelligence systems today is the lack of semantic models of those activities on the environment, so that the system can recognize the speci c activity being performed by the user(s) and act accordingly. In this context, this thesis addresses the general problem of knowledge representation in Smart Spaces. The main objective is to develop knowledge-based models, equipped with semantics to learn, infer and monitor human behaviours in Smart Spaces. Moreover, it is easy to recognize that some aspects of this problem have a high degree of uncertainty, and therefore, the developed models must be equipped with mechanisms to manage this type of information. A fuzzy ontology and a semantic hybrid system are presented to allow modelling and recognition of a set of complex real-life scenarios where vagueness and uncertainty are inherent to the human nature of the users that perform it. The handling of uncertain, incomplete and vague data (i.e., missing sensor readings and activity execution variations, since human behaviour is non-deterministic) is approached for the rst time through a fuzzy ontology validated on real-time settings within a hybrid data-driven and knowledgebased architecture. The semantics of activities, sub-activities and real-time object interaction are taken into consideration. The proposed framework consists of two main modules: the low-level sub-activity recognizer and the high-level activity recognizer. The rst module detects sub-activities (i.e., actions or basic activities) that take input data directly from a depth sensor (Kinect). The main contribution of this thesis tackles the second component of the hybrid system, which lays on top of the previous one, in a superior level of abstraction, and acquires the input data from the rst module's output, and executes ontological inference to provide users, activities and their in uence in the environment, with semantics. This component is thus knowledge-based, and a fuzzy ontology was designed to model the high-level activities. Since activity recognition requires context-awareness and the ability to discriminate among activities in di erent environments, the semantic framework allows for modelling common-sense knowledge in the form of a rule-based system that supports expressions close to natural language in the form of fuzzy linguistic labels. The framework advantages have been evaluated with a challenging and new public dataset, CAD-120, achieving an accuracy of 90.1% and 91.1% respectively for low and high-level activities. This entails an improvement over both, entirely data-driven approaches, and merely ontology-based approaches. As an added value, for the system to be su ciently simple and exible to be managed by non-expert users, and thus, facilitate the transfer of research to industry, a development framework composed by a programming toolbox, a hybrid crisp and fuzzy architecture, and graphical models to represent and con gure human behaviour in Smart Spaces, were developed in order to provide the framework with more usability in the nal application. As a result, human behaviour recognition can help assisting people with special needs such as in healthcare, independent elderly living, in remote rehabilitation monitoring, industrial process guideline control, and many other cases. This thesis shows use cases in these areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experiences of several healthcare organizations were considered to distinguish the most frequently used lean tools, the success and failure factors, and the obstacles that may appear while implementing lean. As a result, two approaches to “go lean” were defined, and analyzed from the prospective of the applicability to healthcare processes. Industrialization of healthcare was studied, and the most promising digital technology tools to improve healthcare process were highlighted. Finally, the analysis of healthcare challenges and feasible ways to address them was conducted and presented as the main result of this work. The possible ways of implementation of the findings and limitations were described in the conclusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this thesis was to study the effect of pulsed electric field on the preparation of TiO2 nanoparticles via sol-gel method under the visible light irradiation. The literature part introduces properties of different TiO2 crystal forms and principle of photocatalysis. It was expected that pulsed electric field would have an influence on degradation for oxalic acid and formic acid. TiO2 samples were prepared by using three frequencies (50Hz, 294Hz, and 963Hz) and two treatment times (12 minutes and 24 minutes) of pulsed electric field. The photocatalytic activities of TiO2 samples produced with sol-gel method were also compared with the TiO2 particles made by previous study and with the commercial TiO2 powder Aeroxide® (Evonic Degussa GmbH) at the same condition. Results show that pulsed electric field does have an effect on degradation for oxalic acid and formic acid. Generally, higher photocatalytic activities for oxalic acid and formic acid were obtained with lower frequency and longer treatment time of pulsed electric field.