42 resultados para ATTOSECOND PULSE GENERATION
Resumo:
Presentation at the Nordic Perspectives on Open Access and Open Science seminar, Helsinki, October 15, 2013
Resumo:
Kristiina Hormia-Poutasen esitys CBUC-konferenssissa Barcelonassa 12.4.2013.
Resumo:
Kristiina Hormia-Poutasen esitys CBUC-konferenssissa Barcelonassa 12.4.2013.
Resumo:
Kristiina Hormia-Poutasen esitys CBUC-konferenssissa Barcelonassa 12.4.2013.
Resumo:
Kristiina Hormia-Poutasen esitys CBUC-konferenssissa 12.4.2013 Barcelonassa.
Resumo:
Advanced oxidation processes (AOPs) have been studied and developed to suffice the effective removal of refractory and toxic compounds in polluted water. The quality and cost of wastewater treatment need improvements, and electric discharge technology has a potential to make a significant difference compared to other established AOPs based on energy efficiency. The generation of active oxidant species such as ozone and hydroxyl radicals by high voltage discharge is a relatively new technology for water treatment. Gas-phase pulsed corona discharge (PCD), where a treated aqueous solution is dispersed between corona-producing electrodes free of the dielectric barriers, was developed as an alternative approach to the problem. The short living radicals and ozone formed in the gas phase and at the gas-liquid interface react with dissolved impurities. PCD equipment has a relatively simple configuration, and with the reactor in an enclosed compartment, it is insensitive towards gas humidity and does not need the gas transport. In this thesis, PCD was used to study and evaluate the energy efficiency for degrading various organic compounds, as well as the chemistry of the oxidation products formed. The experiments investigate the aqueous oxidation of phenol, humic substances, pharmaceutical compounds (paracetamol, ibuprofen, indomethacin, salicylic acids, -estradiol), as well as lignin degradation and transformation to aldehydes. The study aims to establish the influence of initial concentration of the target pollutant, the pulsed discharge parameters, gas phase composition and the pH on the oxidation kinetics and the efficiency. Analytical methods to measure the concentrations of the target compounds and their by-products include HPLC, spectrophotometry, TOC and capillary electrophoresis. The results of the research included in this summary are presented in the attached publications and manuscripts accepted for publication. Pulsed corona discharge proved to be highly effective in oxidizing each of the target compounds, surpassing the closest competitor, conventional ozonation. The increase in oxidation efficiencies for some compounds in oxygen media and at lower pulse repetition frequencies shows a significant role of ozone. The role of the ·OH radicals was established in the surface reactions. The main oxidation products, formation of nitrates, and the lignin transformation were quantified. A compound specific approach is suggested for optimization of the PCD parameters that have the most significant impact on the oxidation energy efficiency because of the different characteristics and responses of the target compound to the oxidants, as well as different admixtures that are present in the wastewater. Further studies in the method’s safety (nitration and nitrosation of organic compounds, nitrite and nitrate formation enhancement) are needed for promoting the method.
Resumo:
New challenges have been created in the modern work environment as the diversity of the workforce is greater than ever in terms of generations. There will become a large demand of generation Y employees as the baby boomer generation employees retire at an accelerated rate. The purpose of this study is to investigate Y generation specific characteristics and to identify motivational systems to enhance performance. The research questions are: 1. What are Y generation characteristics? 2. What motivational systems organizations can form to motivate Y generation employees and in turn, create better performance? The Y generation specific characteristics identified from the literature include; achievement oriented; confident; educated; multitasking; having a need for feedback; needing management support; sociable and tech savvy. The proposed motivational systems can be found in four areas of the organization; HRM, training and development, communication and decision making policies. Three focus groups were held to investigate what would motivate generation Y employees to achieve better performance. Two of these focus groups were Finnish natives and the third consisted of international students. The HRM systems included flexibility and a culture of fun. It was concluded that flexibility within the workplace and role was a great source of motivation. Culture of fun was not responded to as favorably although most focus group participants rated enjoyableness as one of their top motivating factors. Training and development systems include training programs and mentoring as sources of potential motivation. Training programs were viewed as a mode to gain a better position and were not necessarily seen as motivational systems. Mentoring programs were not concluded to have a significant effect on motivation. Communication systems included keeping up with technology, clarity and goals as well as feedback. Keeping up with technology was seen as an ineffective tool to motivate. Clarity and goal setting was seen as very important to be able to perform but not necessarily motivating. Feedback had a highly motivating effect on these focus groups. Decision making policies included collaboration and teamwork as well as ownership. Teams were familiar and meet the social needs of Y generation employees and are motivating. Ownership was equated with trust and responsibility and was highly valued as well as motivating to these focus group participants.
Resumo:
Innovations diffuse at different speed among the members of a social system through various communication channels. The group of early adopters can be seen as the most influential reference group for majority of people to base their innovation adoption decisions on. Thus, the early adopters can often accelerate the diffusion of innovations. The purpose of this research is to discover means of diffusion for an innovative product in Finnish market through the influential early adopters in respect to the characteristics of the case product. The purpose of the research can be achieved through the following sub objectives: Who are the potential early adopters for the case product and why? How the potential early adopters of the case product should be communicated with? What would be the expectations, preferences, and experiences of the early adopters of the case product? The case product examined in this research is a new board game called Rock Science which is considered to be incremental innovation bringing board gaming and hard rock music together in a new way. The research was conducted in two different parts using both qualitative and quantitative research methods. This mixed method research began with expert interviews of six music industry experts. The information gathered from the interviews enabled researcher to compose the questionnaire for the quantitative part of the study. Internet survey that was sent out resulted with a sample of 97 responses from the targeted population. The key findings of the study suggest that (1) the potential early adopters for the case product are more likely to be young adults from the capital city area with great interest in rock music, (2) the early adopters can be reached effectively through credible online sources of information, and (3) the respondents overall product feedback is highly positive, except in the case of quality-price ratio of the product. This research indicates that more effective diffusion of Rock Science board game in Finland can be reached through (1) strategic alliances with music industry and media partnerships, (2) pricing adjustments, (3) use of supporting game formats, and (4) innovative use of various social media channels.
Resumo:
High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.