70 resultados para three-phase induction motor
Resumo:
During the latest few years the need for new motor types has grown, since both high efficiency and an accurate dynamic performance are demanded in industrial applications. For this reason, new effective control systems such as direct torque control (DTC) have been developed. Permanent magnet synchronous motors (PMSM) are well suitable for new adjustable speed AC inverter drives, because their efficiency and power factor are not depending on the pole pair number and speed to the same extent as it is the case in induction motors. Therefore, an induction motor (IM) with a mechanical gearbox can often be replaced with a direct PM motor drive. Space as well as costs will be saved, because the efficiency increases and the cost of maintenance decreases as well. This thesis deals with design criterion, analytical calculation and analysis of the permanent magnet synchronous motor for both sinusoidal air-gap flux density and rectangular air-gapflux density. It is examined how the air-gap flux, flux densities, inductances and torque can be estimated analytically for salient pole and non-salient pole motors. It has been sought by means of analytical calculations for the ultimate construction for machines rotating at relative low 300 rpm to 600 rpm speeds, which are suitable speeds e.g. in Pulp&Paper industry. The calculations are verified by using Finite Element calculations and by measuring of prototype motor. The prototype motor is a 45 kW, 600 rpm PMSM with buried V-magnets, which is a very appropriate construction for high torque motors with a high performance. With the purposebuilt prototype machine it is possible not only to verify the analytical calculations but also to show whether the 600 rpm PMSM can replace the 1500 rpm IM with a gear. It can also be tested if the outer dimensions of the PMSM may be the same as for the IM and if the PMSM in this case can produce a 2.5 fold torque, in consequence of which it may be possible to achieve the same power. The thesis also considers the question how to design a permanent magnet synchronous motor for relatively low speed applications that require a high motor torqueand efficiency as well as bearable costs of permanent magnet materials. It is shown how a selection of different parameters affects the motor properties. Key words: Permanent magnet synchronous motor, PMSM, surface magnets, buried magnets
Resumo:
In order that the radius and thus ununiform structure of the teeth and otherelectrical and magnetic parts of the machine may be taken into consideration the calculation of an axial flux permanent magnet machine is, conventionally, doneby means of 3D FEM-methods. This calculation procedure, however, requires a lotof time and computer recourses. This study proves that also analytical methods can be applied to perform the calculation successfully. The procedure of the analytical calculation can be summarized into following steps: first the magnet is divided into slices, which makes the calculation for each section individually, and then the parts are submitted to calculation of the final results. It is obvious that using this method can save a lot of designing and calculating time. Thecalculation program is designed to model the magnetic and electrical circuits of surface mounted axial flux permanent magnet synchronous machines in such a way, that it takes into account possible magnetic saturation of the iron parts. Theresult of the calculation is the torque of the motor including the vibrations. The motor geometry and the materials and either the torque or pole angle are defined and the motor can be fed with an arbitrary shape and amplitude of three-phase currents. There are no limits for the size and number of the pole pairs nor for many other factors. The calculation steps and the number of different sections of the magnet are selectable, but the calculation time is strongly depending on this. The results are compared to the measurements of real prototypes. The permanent magnet creates part of the flux in the magnetic circuit. The form and amplitude of the flux density in the air-gap depends on the geometry and material of the magnetic circuit, on the length of the air-gap and remanence flux density of the magnet. Slotting is taken into account by using the Carter factor in the slot opening area. The calculation is simple and fast if the shape of the magnetis a square and has no skew in relation to the stator slots. With a more complicated magnet shape the calculation has to be done in several sections. It is clear that according to the increasing number of sections also the result will become more accurate. In a radial flux motor all sections of the magnets create force with a same radius. In the case of an axial flux motor, each radial section creates force with a different radius and the torque is the sum of these. The magnetic circuit of the motor, consisting of the stator iron, rotor iron, air-gap, magnet and the slot, is modelled with a reluctance net, which considers the saturation of the iron. This means, that several iterations, in which the permeability is updated, has to be done in order to get final results. The motor torque is calculated using the instantaneous linkage flux and stator currents. Flux linkage is called the part of the flux that is created by the permanent magnets and the stator currents passing through the coils in stator teeth. The angle between this flux and the phase currents define the torque created by the magnetic circuit. Due to the winding structure of the stator and in order to limit the leakage flux the slot openings of the stator are normally not made of ferromagnetic material even though, in some cases, semimagnetic slot wedges are used. In the slot opening faces the flux enters the iron almost normally (tangentially with respect to the rotor flux) creating tangential forces in the rotor. This phenomenon iscalled cogging. The flux in the slot opening area on the different sides of theopening and in the different slot openings is not equal and so these forces do not compensate each other. In the calculation it is assumed that the flux entering the left side of the opening is the component left from the geometrical centre of the slot. This torque component together with the torque component calculated using the Lorenz force make the total torque of the motor. It is easy to assume that when all the magnet edges, where the derivative component of the magnet flux density is at its highest, enter the slot openings at the same time, this will have as a result a considerable cogging torque. To reduce the cogging torquethe magnet edges can be shaped so that they are not parallel to the stator slots, which is the common way to solve the problem. In doing so, the edge may be spread along the whole slot pitch and thus also the high derivative component willbe spread to occur equally along the rotation. Besides forming the magnets theymay also be placed somewhat asymmetric on the rotor surface. The asymmetric distribution can be made in many different ways. All the magnets may have a different deflection of the symmetrical centre point or they can be for example shiftedin pairs. There are some factors that limit the deflection. The first is that the magnets cannot overlap. The magnet shape and the relative width compared to the pole define the deflection in this case. The other factor is that a shifting of the poles limits the maximum torque of the motor. If the edges of adjacent magnets are very close to each other the leakage flux from one pole to the other increases reducing thus the air-gap magnetization. The asymmetric model needs some assumptions and simplifications in order to limit the size of the model and calculation time. The reluctance net is made for symmetric distribution. If the magnets are distributed asymmetrically the flux in the different pole pairs will not be exactly the same. Therefore, the assumption that the flux flows from the edges of the model to the next pole pairs, in the calculation model from one edgeto the other, is not correct. If it were wished for that this fact should be considered in multi-pole pair machines, this would mean that all the poles, in other words the whole machine, should be modelled in reluctance net. The error resulting from this wrong assumption is, nevertheless, irrelevant.
Resumo:
IIn electric drives, frequency converters are used to generatefor the electric motor the AC voltage with variable frequency and amplitude. When considering the annual sale of drives in values of money and units sold, the use of low-performance drives appears to be in predominant. These drives have tobe very cost effective to manufacture and use, while they are also expected to fulfill the harmonic distortion standards. One of the objectives has also been to extend the lifetime of the frequency converter. In a traditional frequency converter, a relatively large electrolytic DC-link capacitor is used. Electrolytic capacitors are large, heavy and rather expensive components. In many cases, the lifetime of the electrolytic capacitor is the main factor limiting the lifetime of the frequency converter. To overcome the problem, the electrolytic capacitor is replaced with a metallized polypropylene film capacitor (MPPF). The MPPF has improved properties when compared to the electrolytic capacitor. By replacing the electrolytic capacitor with a film capacitor the energy storage of the DC-linkwill be decreased. Thus, the instantaneous power supplied to the motor correlates with the instantaneous power taken from the network. This yields a continuousDC-link current fed by the diode rectifier bridge. As a consequence, the line current harmonics clearly decrease. Because of the decreased energy storage, the DC-link voltage fluctuates. This sets additional conditions to the controllers of the frequency converter to compensate the fluctuation from the supplied motor phase voltages. In this work three-phase and single-phase frequency converters with small DC-link capacitor are analyzed. The evaluation is obtained with simulations and laboratory measurements.
Resumo:
Diplomityössä esitellään menetelmiä sauvarikon toteamiseksi. Työn tarkoituksena on tutkia roottorivaurioita staattorivirran avulla. Työ jaetaan karkeasti kolmeen osa-alueeseen: oikosulkumoottorin vikoihin, roottorivaurioiden tunnistamiseen ja signaalinkäsittelymenetelmiin, jonka avulla havaitaan sauvarikko. Oikosulkumoottorin vikoja ovat staattorikäämien vauriot ja roottorivauriot. Roottorikäämien vaurioita ovat roottori sauvojen murtuminen sekä roottorisauvan irtoaminen oikosulkujenkaan päästä. Roottorivaurioiden tunnistamismenetelmiä ovat parametrin arviointi ja virtaspektrianalyysi. Työn alkuosassa esitellään oikosulkumoottorien rakenne ja toiminta. Esitellään moottoriin kohdistuvia vikoja ja etsitään ratkaisumenetelmiä roottorivaurioiden tunnistamisessa. Lopuksi tutkitaan, kuinka staattorimittaustietojen perusteella saadut tulokset voidaan käsitellä FFT -algoritmilla ja kuinka FFT -algoritmi voidaan toteuttaa sulautettuna Sharc -prosessorin avulla. Työssä käytetään ADSP 21062 EZ -LAB kehitysympäristöä, jonka avulla voidaan ajaa ohjelmia RAM-sirusta, joka on vuorovaikutuksessa SHARC -laudassa oleviin laitteisiin.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
Induction motors are widely used in industry, and they are generally considered very reliable. They often have a critical role in industrial processes, and their failure can lead to significant losses as a result of shutdown times. Typical failures of induction motors can be classified into stator, rotor, and bearing failures. One of the reasons for a bearing damage and eventually a bearing failure is bearing currents. Bearing currents in induction motors can be divided into two main categories; classical bearing currents and inverter-induced bearing currents. A bearing damage caused by bearing currents results, for instance, from electrical discharges that take place through the lubricant film between the raceways of the inner and the outer ring and the rolling elements of a bearing. This phenomenon can be considered similar to the one of electrical discharge machining, where material is removed by a series of rapidly recurring electrical arcing discharges between an electrode and a workpiece. This thesis concentrates on bearing currents with a special reference to bearing current detection in induction motors. A bearing current detection method based on radio frequency impulse reception and detection is studied. The thesis describes how a motor can work as a “spark gap” transmitter and discusses a discharge in a bearing as a source of radio frequency impulse. It is shown that a discharge, occurring due to bearing currents, can be detected at a distance of several meters from the motor. The issues of interference, detection, and location techniques are discussed. The applicability of the method is shown with a series of measurements with a specially constructed test motor and an unmodified frequency-converter-driven motor. The radio frequency method studied provides a nonintrusive method to detect harmful bearing currents in the drive system. If bearing current mitigation techniques are applied, their effectiveness can be immediately verified with the proposed method. The method also gives a tool to estimate the harmfulness of the bearing currents by making it possible to detect and locate individual discharges inside the bearings of electric motors.
Resumo:
The aim of this thesis is to describe hybrid drive design problems, the advantages and difficulties related to the drive. A review of possible hybrid constructions, benefits of parallel, series and series-parallel hybrids is done. In the thesis analytical and finite element calculations of permanent magnet synchronous machines with embedded magnets were done. The finite element calculations were done using Cedrat’s Flux 2D software. This machine is planned to be used as a motor-generator in a low power parallel hybrid vehicle. The boundary conditions for the design were found from Lucas-TVS Ltd., India. Design Requirements, briefly: • The system DC voltage level is 120 V, which implies Uphase = 49 V (RMS) in a three phase system. • The power output of 10 kW at base speed 1500 rpm (Torque of 65 Nm) is desired. • The maximum outer diameter should not be more than 250 mm, and the maximum core length should not exceed 40 mm. The main difficulties which the author met were the dimensional restrictions. After having designed and analyzed several possible constructions they were compared and the final design selected. Dimensioned and detailed design is performed. Effects of different parameters, such as the number of poles, number of turns and magnetic geometry are discussed. The best modification offers considerable reduction of volume.
Resumo:
A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 – 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 – 120 m. The chemical aging of the insulation when exposed to raw natural gas is discussed based on a vast set of experimental tests with the gas mixture representing the real gas mixture at the wellhead. The mixture was created by mixing dry hydrocarbon gas, heavy hydrocarbon compounds, monoethylene glycol, and water. The mixture was chosen to be more aggressive by increasing the amount of liquid substances. Furthermore, the temperature and pressure were increased, which resulted in accelerated test conditions. The time required to detect severe degradation was thus decreased. The test program included a comparison of materials, an analysis of the e ects of di erent compounds in the gas mixture, namely water and heavy hydrocarbons, on the aging, an analysis of the e ects of temperature and exposure duration, and also an analysis on the e ect of sudden pressure changes on the degradation of the insulating materials. It was found in the tests that an insulation consisting of mica, glass, and epoxy resin can tolerate the raw natural gas, but it experiences some degradation. The key material in the composite insulation is the resin, which largely defines the performance of the insulation system. The degradation of the insulation is mostly determined by the amount of gas mixture di used into it. The di usion was seen to follow Fick’s second law, but the coe cients were not accurately defined. The di usion was not sensitive to temperature, but it was dependent upon the thermodynamic state of the gas mixture, in other words, the amounts of liquid components in the gas. The weight increase observed was mostly related to heavy hydrocarbon compounds, which act as plasticizers in the epoxy resin. The di usion of these compounds is determined by the crosslink density of the resin. Water causes slight changes in the chemical structure, but these changes do not significantly contribute to the aging phenomena. Sudden changes in pressure can lead to severe damages in the insulation, because the motion of the di used gas is able to create internal cracks in the insulation. Therefore, the di usion only reduces the mechanical strength of the insulation, but the ultimate breakdown can potentially be caused by a sudden drop in the pressure of the process gas.
Resumo:
Centrifugal pumps are widely used in industrial and municipal applications, and they are an important end-use application of electric energy. However, in many cases centrifugal pumps operate with a significantly lower energy efficiency than they actually could, which typically has an increasing effect on the pump energy consumption and the resulting energy costs. Typical reasons for this are the incorrect dimensioning of the pumping system components and inefficiency of the applied pump control method. Besides the increase in energy costs, an inefficient operation may increase the risk of a pump failure and thereby the maintenance costs. In the worst case, a pump failure may lead to a process shutdown accruing additional costs. Nowadays, centrifugal pumps are often controlled by adjusting their rotational speed, which affects the resulting flow rate and output pressure of the pumped fluid. Typically, the speed control is realised with a frequency converter that allows the control of the rotational speed of an induction motor. Since a frequency converter can estimate the motor rotational speed and shaft torque without external measurement sensors on the motor shaft, it also allows the development and use of sensorless methods for the estimation of the pump operation. Still today, the monitoring of pump operation is based on additional measurements and visual check-ups, which may not be applicable to determine the energy efficiency of the pump operation. This doctoral thesis concentrates on the methods that allow the use of a frequency converter as a monitoring and analysis device for a centrifugal pump. Firstly, the determination of energy-efficiency- and reliability-based limits for the recommendable operating region of a variable-speed-driven centrifugal pump is discussed with a case study for the laboratory pumping system. Then, three model-based estimation methods for the pump operating location are studied, and their accuracy is determined by laboratory tests. In addition, a novel method to detect the occurrence of cavitation or flow recirculation in a centrifugal pump by a frequency converter is introduced. Its sensitivity compared with known cavitation detection methods is evaluated, and its applicability is verified by laboratory measurements for three different pumps and by using two different frequency converters. The main focus of this thesis is on the radial flow end-suction centrifugal pumps, but the studied methods can also be feasible with mixed and axial flow centrifugal pumps, if allowed by their characteristics.
Resumo:
Pulssinleveysmoduloidun vaihtosuuntaajan hyötysuhteen parantaminen ja kytkentätaajuuden suurentaminen ovat johtaneet lähtöjännitteen suuritaajuiseen taajuussisältöön kaksitasoisessa, jännitevälipiirillisessä taajuusmuuttajatopologiassa. Kasvava tarve siirtää tehoa myös verkkoon päin on lisännyt aktiivisen verkkosillan käyttöä. Kaksitasoisen aktiivisen verkkosillan vaikutuksesta DC-välipiirin keskipisteen ja kolmivaiheisen kuorman tähtipisteen välinen jännite on nollasta poikkeava aiheuttaen suurentuneen yhteismuotoisen jännitteen taajuusmuuttajan lähtöön ja verkon puolelle. Lisäksi yhteismuotoisten jännitteiden aiheuttamat kytkentätaajuiset häiriövirrat voivat aiheuttaa vikavirtasuojien tahatonta laukeamista, vaikeuttaa EMC-standardien vaatimusten täyttämistä, lisätä moottorin käämieristyksien rasitusta ja mahdollisuutta moottorin laakerivaurioille. Diplomityössä tutkitaan aktiivisen ja passiivisen verkkosillan tuottamaa yhteismuotoista jännitettä simuloinneilla. Esitellään aikaisempaa tutkimustietoa yhteismuotoisen jännitteen ja virran vaimennusratkaisuista aktiivista verkkosiltaa käytettäessä. Tutkimustiedon pohjalta suunnitellaan koelaitteistolle soveltuva suodin. Suotimen toiminta testataan simuloinnein sekä kokeellisin mittauksin. Tehdyt mittaukset osoittavat, että suunniteltu suodin vaimentaa yhteismuotoista jännitettä noin 20 dB verkkosillan kytkentätaajuudella ja tämän jälkeen yli 20 dB/dekadi taajuuteen 100 kHz asti. Lisäksi yhteismuotoisen virran suuruus syöttökaapelin kautta pieneni ehdotetun suotimen vaikutuksesta.
Resumo:
The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
The standard squirrel-cage induction machine has nearly reached its maximum efficiency. In order to further increase the energy efficiency of electrical machines, the use of permanent magnets in combination with the robust design and the line start capability of the induction machine is extensively investigated. Many experimental designs have been suggested in literature, but recently, these line-start permanent-magnet machines (LSPMMs) have become off-the-shelf products available in a power range up to 7.5 kW. The permanent magnet flux density is a function of the operating temperature. Consequently, the temperature will affect almost every electrical quantity of the machine, including current, torque, and efficiency. In this paper, the efficiency of an off-the-shelf 4-kW three-phase LSPMM is evaluated as a function of the temperature by both finite-element modeling and by practical measurements. In order to obtain stator, rotor, and permanent magnet temperatures, lumped thermal modeling is used.
Resumo:
Hyötysuhde on tärkeätekijä moottorimarkkinoilla, sillä moottorin ostajan kannalta moottorin hyvä hyötysuhde merkitsee taloudellisuutta pitkällä aikavälillä. Tästä johtuen hyötysuhde on merkittävä kriteeri moottorisuunnittelussa. Moottorin hyötysuhteen määrittämisen mittausmenetelmät on määritelty IEC- ja IEEE-standardeissa. Diplomityössäkäydään läpi eri standardimenetelmillä tehtäviä mittauksia ja vertaillaan niitäkeskenään, koska hyötysuhteen määrityksen tarkkuus riippuu käytettävästä mittausmenetelmästä. Työssä keskitytään sinimuotoisella jännitteellä syötetyn induktiomoottoriin hyötysuhteen määritysmenetelmiin perehtyen erityisesti IEEE 112-standardin B-menetelmään, ja mitataan erään induktiomoottorin hyötysuhde B-menetelmällä. Työssä tehdään selkoa sinisyötölle tarkoitettujen hyötysuhdemittausmenetelmien soveltamisesta epäsinimuotoiseen taajuusmuuttajasyöttöön sekä tutkitaan taajuusmuuttajalla syötetyn moottorin sähköisten suureiden mittaamiseen liittyvää mittausepävarmuutta. Lisäksi selvitetään kokeellisesti taajuusmuuttajasyötöllä tehdyistä mittauksista saatujen tulosten riippuvuutta käytetystä virranmittaustavasta.
Resumo:
Erilaisten simulaatioiden tekeminen tutkimustyössä on tärkeää. Simulaatioiden avulla voidaan vähentää prototyyppitestauksen tarvetta. Diplomityössä on esitelty kehitettävää sähkökäyttösimulaattoria, jolla voidaan tarkastella erilaisten sähkökäyttöjen häviöiden muodostumista. Diplomityössä on keskitytty vertailemaan kehitettävän simulaattorin simulointituloksia todelliselta sähkökäytöltä mitattuihin suureisiin. Vertailun kohteena on taajuusmuuttajalla syötetty oikosulkumoottori, minkä virtojen ja jännitteiden vertailu on tehty aika- ja taajuustasossa.