20 resultados para threat of shock


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dreaming is a pure form of phenomenality, created by the brain untouched by external stimulation or behavioral activity, yet including a full range of phenomenal contents. Thus, it has been suggested that the dreaming brain could be used as a model system in a biological research program on consciousness (Revonsuo, 2006). In the present thesis, the philosophical view of biological realism is accepted, and thus, dreaming is considered as a natural biological phenomenon, explainable in naturalistic terms. The major theoretical contribution of the present thesis is that it explores dreaming from a multidisciplinary perspective, integrating information from various fields of science, such as dream research, consciousness research, evolutionary psychology, and cognitive neuroscience. Further, it places dreaming into a multilevel framework, and investigates the constitutive, etiological, and contextual explanations for dreaming. Currently, the only theory offering a full multilevel explanation for dreaming, that is, a theory including constitutive, etiological, and contextual level explanations, is the Threat Simulation Theory (TST) (Revonsuo, 2000a; 2000b). The empirical significance of the present thesis lies in the tests conducted to test this specific theory put forth to explain the form, content, and biological function of dreaming. The first step in the empirical testing of the TST was to define exact criteria for what is a ‘threatening event’ in dreams, and then to develop a detailed and reliable content analysis scale with which it is possible to empirically explore and quantify threatening events in dreams. The second step was to seek answers to the following questions derived from the TST: How frequent threatening events are in dreams? What kind of qualities these events have? How threatening events in dreams relate to the most recently encoded or the most salient memory traces of threatening events experienced in waking life? What are the effects of exposure to severe waking life threat on dreams? The results reveal that threatening events are relatively frequent in dreams, and that the simulated threats are realistic. The most common threats include aggression, are targeted mainly against the dream self, and include simulations of relevant and appropriate defensive actions. Further, real threat experiences activate the threat simulation system in a unique manner, and dream content is modulated by the activation of long term episodic memory traces with highest negative saliency. To sum up, most of the predictions of the TST tested in this thesis received considerable support. The TST presents a strong argument that explains the specific design of dreams as threat simulations. The TST also offers a plausible explanation for why dreaming would have been selected for: because dreaming interacted with the environment in such a way that enhanced fitness of ancestral humans. By referring to a single threat simulation mechanism it furthermore manages to explain a wide variety of dream content data that already exists in the literature, and to predict the overall statistical patterns of threat content in different samples of dreams. The TST and the empirical tests conducted to test the theory are a prime example of what a multidisciplinary approach to mental phenomena can accomplish. Thus far, dreaming seems to have always resided in the periphery of science, never regarded worth to be studied by the mainstream. Nevertheless, when brought to the spotlight, the study of dreaming can greatly benefit from ideas in diverse branches of science. Vice versa, knowledge learned from the study of dreaming can be applied in various disciplines. The main contribution of the present thesis lies in putting dreaming back where it belongs, that is, into the spotlight in the cross-road of various disciplines.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein homeostasis is essential for cells to prosper and survive. Various forms of stress, such as elevated temperatures, oxidative stress, heavy metals or bacterial infections cause protein damage, which might lead to improper folding and formation of toxic protein aggregates. Protein aggregation is associated with serious pathological conditions such as Alzheimer’s and Huntington’s disease. The heat shock response is a defense mechanism that protects the cell against protein-damaging stress. Its ancient origin and high conservation among eukaryotes suggest that the response is crucial for survival. The main regulator of the heat shock response is the transcription factor heat shock factor 1 (HSF1), which induces transcription of genes encoding protective molecular chaperones. In vertebrates, a family of four HSFs exists (HSF1-4), with versatile functions not only in coping with acute stress, but also in development, longevity and cancer. Thus, knowledge of the HSFs will aid in our understanding on how cells survive suboptimal circumstances, but will also provide insights into normal physiological processes as well as diseaseassociated conditions. In this study, the function and regulation of HSF2 have been investigated. Earlier gene inactivation experiments in mice have revealed roles for HSF2 in development, particularly in corticogenesis and spermatogenesis. Here, we demonstrate that HSF2 holds a role also in the heat shock response and influences stress-induced expression of heat shock proteins. Intriguingly, DNA-binding activity of HSF2 upon stress was dependent on the presence of intact HSF1, suggesting functional interplay between HSF1 and HSF2. The underlying mechanism for this phenomenon could be configuration of heterotrimers between the two factors, a possibility that was experimentally verified. By changing the levels of HSF2, the expression of HSF1-HSF2 heterotrimer target genes was altered, implementing HSF2 as a modulator of HSF-mediated transcription. The results further indicate that HSF2 activity is dependent on its concentration, which led us to ask the question of how accurate HSF2 levels are achieved. Using mouse spermatogenesis as a model system, HSF2 was found to be under direct control of miR-18, a miRNA belonging to the miR-17~92 cluster/Oncomir-1 and whose physiological function had remained unclear. Investigations on spermatogenesis are severely hampered by the lack of cell systems that would mimic the complex differentiation processes that constitute male germ cell development. Therefore, to verify that HSF2 is regulated by miR-18 in spermatogenesis, a novel method named T-GIST (Transfection of Germ cells in Intact Seminiferous Tubules) was developed. Employing this method, the functional consequences of miR-18-mediated regulation in vivo were demonstrated; inhibition of miR- 18 led to increased expression of HSF2 and altered the expression of HSF2 target genes Ssty2 and Speer4a. Consequently, the results link miR-18 to HSF2-mediated processes such as germ cell maturation and quality control and provide miR-18 with a physiological role in gene expression during spermatogenesis.Taken together, this study presents compelling evidence that HSF2 is a transcriptional regulator in the heat shock response and establishes the concept of physical interplay between HSF2 and HSF1 and functional consequences thereof. This is also the first study describing miRNA-mediated regulation of an HSF.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.