22 resultados para terrestrial Polychaeta


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acceleration of solar energetic particles (SEPs) by flares and coronal mass ejections (CMEs) has been a major topic of research for the solar-terrestrial physics and geophysics communities for decades. This thesis discusses theories describing first-order Fermi acceleration of SEPs through repeated crossings at a CME-driven shock. We propose that particle trapping occurs through self-generated Alfvén waves, leading to a turbulent trapping region in front of the shock. Decelerating coronal shocks are shown to be capable of efficient SEP acceleration, provided seed particle injection is sufficient. Quasi-parallel shocks are found to inject thermal particles with good efficiency. The roles of minimum injection velocities, cross-field diffusion, downstream scattering efficiency and cross-shock potential are investigated in detail, with downstream isotropisation timescales having a major effect on injection efficiency. Accelerated spectra of heavier elements up to iron are found to exhibit significantly harder spectra than protons. Accelerated spectra cut-off energies are found to scale proportional to (Q/A)1.5, which is explained through analysis of the spectral shape of amplified Alfvénic turbulence. Acceleration times to different threshold energies are found to be non-linear, indicating that self-consistent time-dependent simulations are required in order to expose the full extent of acceleration dynamics. The well-established quasilinear theory (QLT) of particle scattering is investigated by comparing QLT scattering coefficients with those found via full-orbit simulations. QLT is found to overemphasise resonance conditions. This finding supports the simplifications implemented in the presented coronal shock acceleration (CSA) simulation software. The CSA software package is used to simulate a range of acceleration scenarios. The results are found to be in agreement with well-established particle acceleration theory. At the same time, new spatial and temporal dynamics of particle population trapping and wave evolution are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eutrophication caused by anthropogenic nutrient pollution has become one of the most severe threats to water bodies. Nutrients enter water bodies from atmospheric precipitation, industrial and domestic wastewaters and surface runoff from agricultural and forest areas. As point pollution has been significantly reduced in developed countries in recent decades, agricultural non-point sources have been increasingly identified as the largest source of nutrient loading in water bodies. In this study, Lake Säkylän Pyhäjärvi and its catchment are studied as an example of a long-term, voluntary-based, co-operative model of lake and catchment management. Lake Pyhäjärvi is located in the centre of an intensive agricultural area in southwestern Finland. More than 20 professional fishermen operate in the lake area, and the lake is used as a drinking water source and for various recreational activities. Lake Pyhäjärvi is a good example of a large and shallow lake that suffers from eutrophication and is subject to measures to improve this undesired state under changing conditions. Climate change is one of the most important challenges faced by Lake Pyhäjärvi and other water bodies. The results show that climatic variation affects the amounts of runoff and nutrient loading and their timing during the year. The findings from the study area concerning warm winters and their influences on nutrient loading are in accordance with the IPCC scenarios of future climate change. In addition to nutrient reduction measures, the restoration of food chains (biomanipulation) is a key method in water quality management. The food-web structure in Lake Pyhäjärvi has, however, become disturbed due to mild winters, short ice cover and low fish catch. Ice cover that enables winter seining is extremely important to the water quality and ecosystem of Lake Pyhäjärvi, as the vendace stock is one of the key factors affecting the food web and the state of the lake. New methods for the reduction of nutrient loading and the treatment of runoff waters from agriculture, such as sand filters, were tested in field conditions. The results confirm that the filter technique is an applicable method for nutrient reduction, but further development is needed. The ability of sand filters to absorb nutrients can be improved with nutrient binding compounds, such as lime. Long-term hydrological, chemical and biological research and monitoring data on Lake Pyhäjärvi and its catchment provide a basis for water protection measures and improve our understanding of the complicated physical, chemical and biological interactions between the terrestrial and aquatic realms. In addition to measurements carried out in field conditions, Lake Pyhäjärvi and its catchment were studied using various modelling methods. In the calibration and validation of models, long-term and wide-ranging time series data proved to be valuable. Collaboration between researchers, modellers and local water managers further improves the reliability and usefulness of models. Lake Pyhäjärvi and its catchment can also be regarded as a good research laboratory from the point of view of the Baltic Sea. The main problem in both of them is eutrophication caused by excess nutrients, and nutrient loading has to be reduced – especially from agriculture. Mitigation measures are also similar in both cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Predation is an important selective force that has led to the evolution of a variety of fascinating anti-predator adaptations, such as many types of protective coloration and prey behaviours. Because the evolution of life has begun in the aquatic environment and many anti-predator adaptations are found already in relative primitive taxa, it is likely that many of these adaptations evolved initially in the aquatic environment. Yet, there has been surprisingly little research on the mechanisms and function of antipredator adaptations in aquatic systems. To understand the function of anti-predator adaptations and natural selection imposed on prey appearance and behaviour, I have investigated how protective coloration can be used, either as such or together with behavioural adaptations, to manipulate predator behaviour and decrease predation risk. To this end I conducted a series of behaviour ecological laboratory experiments in which I manipulated the visual appearance of artificial backgrounds and prey items. In paper I of this thesis, I investigated background choice as an anti-predator strategy, by observing the habitat choice of the least killifish (Heterandria formosa) between pairs of artificial backgrounds, both in the presence and absence of predation threat. It has been suggested that prey could decrease their risk of being detected by predators either by preferring backgrounds into which they blend or by preferring visually complex backgrounds. The least killifish preferred a background that matched their patterning to a background that mismatched it, showing that they are able to respond to cues of visual similarity between their colour pattern and the surrounding environment. Interestingly however, in female least killifish visual complexity of the background was a more important cue for habitat safety and may override or act together with background matching when searching for a safe habitat. It is possible that in females, preference for visually complex backgrounds is associated with lower opportunity costs than preference for matching backgrounds would be. Generally, the least killifish showed stronger preference while under predation threat, indicating that their background choice behaviour is an antipredator adaptation. Many aquatic prey species have eyespots, which are colour patterns that consist of roughly concentric rings and have received their name because they for humans often resemble the vertebrate eye. I investigated the anti-predator function of eyespots against predation by fish in papers II, III and IV. Some eyespots have been suggested to benefit prey by diverting the strikes of predators away from vital parts of the prey body or towards a direction that facilitates prey escape. Although proposed over a century ago, the divertive effect of eyespots has proven to be difficult to show experimentally. In papers II and III, I tested for divertive effect of eyespots towards attacking fish by presenting artificial prey with eyespots to laboratory reared three-spined sticklebacks (Gasterosteus aculeatus). I found that eyespots strongly influenced the behaviour of attacking sticklebacks and effectively drew their strikes towards the eyespots. To further investigate this divertive effect and whether the specific shape of eyespots is important for it, I tested in paper III the response of fish also to other markings than eyespots. I found that eyespots were generally more effective in diverting the first strikes of attacking fish compared to other prey markings. My findings suggest that the common occurrence of eyespots in aquatic prey species can at least partly be explained by the divertive effect of the eyespot shape, possibly together with the relative simple developmental mechanisms underlying circular colour patterns. An eyebar is a stripe that runs through the eye, and this pattern has been suggested to obscure the real eyes of the prey by visually blending parts of the eyes and head of the prey and by creating false edges. In paper III, I show that an eyebar effectively disrupts an eyelike shape. This suggests that eyebars provide an effective way to conceal the eyes and consequently obstruct detection and recognition of prey. This experiment also demonstrates that through concealment of the eyes, eyebars could be used to enhance the divertive effect of eyespots, which can explain the common occurrence of eyebars in many species of fish that have eyespots. Larger eyespots have been shown to intimidate some terrestrial predators, such as passerine birds, either because they resemble the eyes of the predator’s own enemy or because highly salient features may have an intimidating effect. In papers II and IV, I investigated whether the occurrence of eyespots in some aquatic prey could be explained by their intimidating effect predatory fish. In paper IV, I also investigated the reason for the intimidating effect of eyelike prey marks. In paper II, I found no clear intimidating effect of eyespots, whereas in paper IV, using a different approach, I found that sticklebacks hesitated to attack towards eyelike but not towards non-eyelike marks. Importantly, paper IV therefore presents the first rigorous evidence for the idea that eye mimicry, and not merely conspicuousness, underlies the intimidating effect. It also showed that the hesitation shown by fish towards eyelike marks is partly an innate response that is reinforced by encounters with predators. Collectively, this thesis shows that prey colour pattern and the visual appearance of the habitat influence the behaviour of fish. The results demonstrate that protective coloration provides numerous distinctive ways for aquatic prey to escape predation. Thus, visual perception and behaviour of fish are important factors shaping the appearance and behaviours of aquatic prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Meandering rivers have been perceived to evolve rather similarly around the world independently of the location or size of the river. Despite the many consistent processes and characteristics they have also been noted to show complex and unique sets of fluviomorphological processes in which local factors play important role. These complex interactions of flow and morphology affect notably the development of the river. Comprehensive and fundamental field, flume and theoretically based studies of fluviomorphological processes in meandering rivers have been carried out especially during the latter part of the 20th century. However, as these studies have been carried out with traditional field measurements techniques their spatial and temporal resolution is not competitive to the level achievable today. The hypothesis of this study is that, by exploiting e increased spatial and temporal resolution of the data, achieved by combining conventional field measurements with a range of modern technologies, will provide new insights to the spatial patterns of the flow-sediment interaction in meandering streams, which have perceived to show notable variation in space and time. This thesis shows how the modern technologies can be combined to derive very high spatial and temporal resolution data on fluvio-morphological processes over meander bends. The flow structure over the bends is recorded in situ using acoustic Doppler current profiler (ADCP) and the spatial and temporal resolution of the flow data is enhanced using 2D and 3D CFD over various meander bends. The CFD are also exploited to simulate sediment transport. Multi-temporal terrestrial laser scanning (TLS), mobile laser scanning (MLS) and echo sounding data are used to measure the flow-based changes and formations over meander bends and to build the computational models. The spatial patterns of erosion and deposition over meander bends are analysed relative to the measured and modelled flow field and sediment transport. The results are compared with the classic theories of the processes in meander bends. Mainly, the results of this study follow well the existing theories and results of previous studies. However, some new insights regarding to the spatial and temporal patterns of the flow-sediment interaction in a natural sand-bed meander bend are provided. The results of this study show the advantages of the rapid and detailed measurements techniques and the achieved spatial and temporal resolution provided by CFD, unachievable with field measurements. The thesis also discusses the limitations which remain in the measurement and modelling methods and in understanding of fluvial geomorphology of meander bends. Further, the hydro- and morphodynamic models’ sensitivity to user-defined parameters is tested, and the modelling results are assessed against detailed field measurement. The study is implemented in the meandering sub-Arctic Pulmanki River in Finland. The river is unregulated and sand-bed and major morphological changes occur annually on the meander point bars, which are inundated only during the snow-melt-induced spring floods. The outcome of this study applies to sandbed meandering rivers in regions where normally one significant flood event occurs annually, such as Arctic areas with snow-melt induced spring floods, and where the point bars of the meander bends are inundated only during the flood events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Successful management of rivers requires an understanding of the fluvial processes that govern them. This, in turn cannot be achieved without a means of quantifying their geomorphology and hydrology and the spatio-temporal interactions between them, that is, their hydromorphology. For a long time, it has been laborious and time-consuming to measure river topography, especially in the submerged part of the channel. The measurement of the flow field has been challenging as well, and hence, such measurements have long been sparse in natural environments. Technological advancements in the field of remote sensing in the recent years have opened up new possibilities for capturing synoptic information on river environments. This thesis presents new developments in fluvial remote sensing of both topography and water flow. A set of close-range remote sensing methods is employed to eventually construct a high-resolution unified empirical hydromorphological model, that is, river channel and floodplain topography and three-dimensional areal flow field. Empirical as well as hydraulic theory-based optical remote sensing methods are tested and evaluated using normal colour aerial photographs and sonar calibration and reference measurements on a rocky-bed sub-Arctic river. The empirical optical bathymetry model is developed further by the introduction of a deep-water radiance parameter estimation algorithm that extends the field of application of the model to shallow streams. The effect of this parameter on the model is also assessed in a study of a sandy-bed sub-Arctic river using close-range high-resolution aerial photography, presenting one of the first examples of fluvial bathymetry modelling from unmanned aerial vehicles (UAV). Further close-range remote sensing methods are added to complete the topography integrating the river bed with the floodplain to create a seamless high-resolution topography. Boat- cart- and backpack-based mobile laser scanning (MLS) are used to measure the topography of the dry part of the channel at a high resolution and accuracy. Multitemporal MLS is evaluated along with UAV-based photogrammetry against terrestrial laser scanning reference data and merged with UAV-based bathymetry to create a two-year series of seamless digital terrain models. These allow the evaluation of the methodology for conducting high-resolution change analysis of the entire channel. The remote sensing based model of hydromorphology is completed by a new methodology for mapping the flow field in 3D. An acoustic Doppler current profiler (ADCP) is deployed on a remote-controlled boat with a survey-grade global navigation satellite system (GNSS) receiver, allowing the positioning of the areally sampled 3D flow vectors in 3D space as a point cloud and its interpolation into a 3D matrix allows a quantitative volumetric flow analysis. Multitemporal areal 3D flow field data show the evolution of the flow field during a snow-melt flood event. The combination of the underwater and dry topography with the flow field yields a compete model of river hydromorphology at the reach scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Living nature consists of countless organisms, which are classified into millions of species. These species interact in many ways; for example predators when foraging on their prey, insect larvae consuming plants, and pathogenic bacteria drifting into humans. In addition, abiotic nature has a great initiative impact on life through many factors (including sunlight, ambient temperature, and water. In my thesis, I have studied interactions among different life forms in multifaceted ways. The webs of these interactions are commonly referred to as food webs, describing feeding relationships between species or energy transfer from one trophic level to another. These ecological interactions – whether they occur between species, between individuals, or between microorganisms within an individual – are among the greatest forces affecting natural communities. Relationships are tightly related to biological diversity, that is, species richness and abundances. A species is called a node in food web vocabulary, and its interactions to other species are called links. Generally, Artic food webs are considered to be loosely linked, simple structures. This conception roots into early modern food webs, where insects and other arthropods, for example, were clumped under one node. However, it has been shown that arthropods form the greatest part of diversity and biomass both in the tropics and in Arctic areas. Earlier challenges of revealing the role of insects and microorganisms in interactions webs have become possible with the help of recent advances in molecular techniques. In the first chapter, I studied the prey diversity of a common bat, Myotis daubentonii, in southwestern Finland. My results proved M. daubentonii being a versatile predator whose diet mainly consists of aquatic insects, such as chironomid midges. In the second chapter, I expanded the view to changes in seasonal and individual-based variation in the diet of M. daubentonii including the relationship between available and observed prey. I found out that chironomids remain the major prey group even though their abundance decreases in proportion to other insect groups. Diet varied a lot between individuals, although the differences were not statistically significant. The third chapter took the study to a large network in Greenland. I showed that Artic food webs are very complex when arthropods are taken into account. In the fourth chapter, I examined the bacterial flora of M. daubentonii and surveyed the zoonotic potential of these bacteria. I found Bartonella bacteria, of which one was described as a new species named after the locality of discovery. I have shown in my thesis that Myotis daubentonii as a predator links many insect species as well as terrestrial and aquatic environments. Moreover, I have exposed that Arctic food webs are complex structures comprising of many densely linked species. Finally, I demonstrated that the bacterial flora of bats includes several previously unknown species, some of which could possibly turn in to zoonosis. To summarize, molecular methods have untied several knots in biological research. I hope that this kind of increasing knowledge of the surrounding nature makes us further value all the life forms on earth.