16 resultados para subtitled videos


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.