39 resultados para stochastic numerical methods
Resumo:
Potentiometric ion sensors are a very important subgroup of electrochemical sensors, very attractive for practical applications due to their small size, portability, low-energy consumption, relatively low cost and not changing the sample composition. They are investigated by the researchers from many fields of science. The continuous development of this field creates the necessity for a detailed description of sensor response and the electrochemical processes important in the practical applications of ion sensors. The aim of this thesis is to present the existing models available for the description of potentiometric ion sensors as well as their applicability and limitations. This includes the description of the diffusion potential occurring at the reference electrodes. The wide range of existing models, from most idealised phase boundary models to most general models, including migration, is discussed. This work concentrates on the advanced modelling of ion sensors, namely the Nernst-Planck-Poisson (NPP) model, which is the most general of the presented models, therefore the most widely applicable. It allows the modelling of the transport processes occurring in ion sensors and generating the potentiometric response. Details of the solution of the NPP model (including the numerical methods used) are shown. The comparisons between NPP and the more idealized models are presented. The applicability of the model to describe the formation of diffusion potential in reference electrode, the lower detection limit of both ion-exchanger and neutral carrier electrodes and the effect of the complexation in the membrane are discussed. The model was applied for the description of both types of electrodes, i.e. with the inner filling solution and solidcontact electrodes. The NPP model allows the electrochemical methods other than potentiometry to be described. Application of this model in Electrochemical Impedance Spectroscopy is discussed and a possible use in chrono-potentiometry is indicated. By combining the NPP model with evolutionary algorithms, namely Hierarchical Genetic Strategy (HGS), a novel method allowing the facilitation of the design of ion sensors was created. It is described in detail in this thesis and its possible applications in the field of ion sensors are indicated. Finally, some interesting effects occurring in the ion sensors (i.e. overshot response and influence of anionic sites) as well as the possible applications of NPP in biochemistry are described.
Resumo:
Tässä työssä tutkittiin FE-analyysin soveltamista S960 QC teräksisen I-profiilin kestävyyden määrittämisessä. Työn tavoitteena oli tarkastella nykyisten suunnitteluohjeiden soveltuvuutta ultralujille teräksille ja koota ohjemateriaali I-profiilin optimoimisesta sekä FE-analyysin hyö-dyntämisestä I-profiilin staattisen ja dynaamisen kestävyyden määrittämisessä. I-profiili mitoitettiin ja optimoitiin Eurokoodi 3:ssa esitettyjen PL3 mukaisten mitoitusohjeiden avulla. Rakenteelle suoritettiin Eurokoodi 3:n ja IIW:n mukaiset lommahdus-, kiepahdus- ja vä-symiskestävyystarkastelut. Väsymistarkastelussa sovellettiin nimellisen jännityksen, rakenteelli-sen jännityksen ja tehollisen lovijännityksen menetelmiä sekä murtumismekaniikkaa. Rakenteel-lisen jännityksen menetelmässä sovellettiin lisäksi lineaarista ja parabolista pintaa pitkin ekstra-polointia, paksuuden yli linearisointia sekä Dong:in menetelmää. Lommahdus-, kiepahdus- ja väsymistarkasteluissa hyödynnettiin analyyttistä laskentaa, FE-analyysiä sekä Frank2d sovellusta. Tarkastelujen perusteella voidaan todeta, että analyyttisillä menetelmillä saadaan numeerisia me-netelmiä varmemmalla puolella olevia tuloksia. Lommahdustarkastelussa ero tulosten välillä on suurimmillaan 8 % ja kiepahdustarkastelussa suurimmillaan 20 % mutta väsymistarkastelussa saadut tulokset eroavat keskenään huomattavasti. Väsymistarkastelussa tehollisen lovijännityksen menetelmällä sekä rakenteellisen jännityksen menetelmän Dong:in menetelmällä saadaan huo-mattavasti muita menetelmiä pidempiä kestoikiä, kun taas yksinkertaisemmilla menetelmillä saa-dut kestoiät ovat lyhyempiä. Rakenteen kestävyyden määrittäminen analyyttisillä menetelmillä on melko helppoa, mutta tu-lokset ovat monesti liian konservatiivisia. FE-analyysillä saadaan puolestaan hyvin tarkkoja tu-loksia mallin ollessa yksityiskohtainen. Mallintaminen on kuitenkin aikaa ja resursseja vievää ja vaatii käyttökokemusta. FE-analyysin mahdolliset hyödyt on aina arvioitava tapauskohtaisesti tarkasteltavan geometrian, kuormitusten ja reunaehtojen perusteella.
Resumo:
Tässä työssä tutkittiin miten totuudenmukaisia tuloksia syklonierottimen virtauskentästä saadaan numeerisella laskennalla, kun käytetään eri turbulenssimalleja. Tarkoitus oli myös selvittää yleisesti syklonin toimintaperiaatteita, haasteita sen käytössä sekä syklonin numeerisen virtauslaskennan perusteita. Numeerisen virtauslaskennan teoria selitetään pääpiirteittäin, samoin turbulenssin mallinnus. Työn laskentaosiossa simuloitiin Fluent-ohjelmalla syklonin virtauskenttää kuumalla ilmalla sekä kahdella eri turbulenssimallilla ja verrattiin tuloksia kirjallisuudesta löytyviin mittaustuloksiin. Simuloinnit suoritettiin sekä ajasta riippuvana että ajasta riippumattomana ja kahdella eri laskentahilalla. Simulointien tulokset osoittivat, että RNG k-ε turbulenssimalli ei kykene tuottamaan totuu-denmukaista virtauskenttää. Toisen käytetyn turbulenssimallin, Reynolds-jännitysmallin tulokset vastasivat enemmän mittaustuloksia. Reynolds-jännitysmallia voidaan pitää käyttökelpoisena syklonin simuloinnissa tämän työn ja kirjallisuuden perusteella. Mallissa oli yksinkertaistuksia, esimerkiksi kiinteää ainetta ei otettu huomioon lainkaan.
Resumo:
A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.
Resumo:
Abstract This doctoral thesis concerns the active galactic nucleus (AGN) most often referred to with the catalogue number OJ287. The publications in the thesis present new discoveries of the system in the context of a supermassive binary black hole model. In addition, the introduction discusses general characteristics of the OJ287 system and the physical fundamentals behind these characteristics. The place of OJ287 in the hierarchy of known types of AGN is also discussed. The introduction presents a large selection of fundamental physics required to have a basic understanding of active galactic nuclei, binary black holes, relativistic jets and accretion disks. Particularly the general relativistic nature of the orbits of close binaries of supermassive black holes is explored with some detail. Analytic estimates of some of the general relativistic effects in such a binary are presented, as well as numerical methods to calculate the effects more precisely. It is also shown how these results can be applied to the OJ287 system. The binary orbit model forms the basis for models of the recurring optical outbursts in the OJ287 system. In the introduction, two physical outburst models are presented in some detail and compared. The radiation hydrodynamics of the outbursts are discussed and optical light curve predictions are derived. The precursor outbursts studied in Paper III are also presented, and tied into the model of OJ287. To complete the discussion of the observable features of OJ287, the nature of the relativistic jets in the system, and in active galactic nuclei in general, is discussed. Basic physics of relativistic jets are presented, with additional detail added in the form of helical jet models. The results of Papers II, IV and V concerning the jet of OJ287 are presented, and their relation to other facets of the binary black hole model is discussed. As a whole, the introduction serves as a guide, though terse, for the physics and numerical methods required to successfully understand and simulate a close binary of supermassive black holes. For this purpose, the introduction necessarily combines a large number of both fundamental and specific results from broad disciplines like general relativity and radiation hydrodynamics. With the material included in the introduction, the publications of the thesis, which present new results with a much narrower focus, can be readily understood. Of the publications, Paper I presents newly discovered optical data points for OJ287, detected on archival astronomical plates from the Harvard College Observatory. These data points show the 1900 outburst of OJ287 for the first time. In addition, new data points covering the 1913 outburst allowed the determination of the start of the outburst with more precision than was possible before. These outbursts were then successfully numerically modelled with an N-body simulation of the OJ287 binary and accretion disc. In Paper II, mechanisms for the spin-up of the secondary black hole in OJ287 via interaction with the primary accretion disc and the magnetic fields in the system are discussed. Timescales for spin-up and alignment via both processes are estimated. It is found that the secondary black hole likely has a high spin. Paper III reports a new outburst of OJ287 in March 2013. The outburst was found to be rather similar to the ones reported in 1993 and 2004. All these outbursts happened just before the main outburst season, and are called precursor outbursts. In this paper, a mechanism was proposed for the precursor outbursts, where the secondary black hole collides with a gas cloud in the primary accretion disc corona. From this, estimates of brightness and timescales for the precursor were derived, as well as a prediction of the timing of the next precursor outburst. In Paper IV, observations from the 2004–2006 OJ287 observing program are used to investigate the existence of short periodicities in OJ287. The existence of a _50 day quasiperiodic component is confirmed. In addition, statistically significant 250 day and 3.5 day periods are found. Primary black hole accretion of a spiral density wave in the accretion disc is proposed as the source of the 50 day period, with numerical simulations supporting these results. Lorentz contracted jet re-emission is then proposed as the reason for the 3.5 day timescale. Paper V fits optical observations and mm and cm radio observations of OJ287 with a helical jet model. The jet is found to have a spine–sheath structure, with the sheath having a much lower Lorentz gamma factor than the spine. The sheath opening angle and Lorentz factor, as well as the helical wavelength of the jet are reported for the first time. Tiivistelmä Tässä väitöskirjatutkimuksessa on keskitytty tutkimaan aktiivista galaksiydintä OJ287. Väitöskirjan osana olevat tieteelliset julkaisut esittelevät OJ287-systeemistä saatuja uusia tuloksia kaksoismusta-aukkomallin kontekstissa. Väitöskirjan johdannossa käsitellään OJ287:n yleisiä ominaisuuksia ja niitä fysikaalisia perusilmiöitä, jotka näiden ominaisuuksien taustalla vaikuttavat. Johdanto selvittää myös OJ287-järjestelmän sijoittumisen aktiivisten galaksiytimien hierarkiassa. Johdannossa käydään läpi joitakin perusfysiikan tuloksia, jotka ovat tarpeen aktiivisten galaksiydinten, mustien aukkojen binäärien, relativististen suihkujen ja kertymäkiekkojen ymmärtämiseksi. Kahden toisiaan kiertävän mustan aukon keskinäisen radan suhteellisuusteoreettiset perusteet käydään läpi yksityiskohtaisemmin. Johdannossa esitetään joitakin analyyttisiä tuloksia tällaisessa binäärissä havaittavista suhteellisuusteoreettisista ilmiöistä. Myös numeerisia menetelmiä näiden ilmiöiden tarkempaan laskemiseen esitellään. Tuloksia sovelletaan OJ287-systeemiin, ja verrataan havaintoihin. OJ287:n mustien aukkojen ratamalli muodostaa pohjan systeemin toistuvien optisten purkausten malleille. Johdannossa esitellään yksityiskohtaisemmin kaksi fysikaalista purkausmallia, ja vertaillaan niitä. Purkausten säteilyhydrodynamiikka käydään läpi, ja myös ennusteet purkausten valokäyrille johdetaan. Johdannossa esitellään myös Julkaisussa III johdettu prekursoripurkausten malli, ja osoitetaan sen sopivan yhteen OJ287:n binäärimallin kanssa. Johdanto esittelee myös relativististen suihkujen fysiikkaa sekä OJ287- systeemiin liittyen että aktiivisten galaksiydinten kontekstissa yleisesti. Relativististen suihkujen perusfysiikka esitellään, kuten myös malleja kierteisistä suihkuista. Julkaisujen II, IV ja V OJ287-systeemin suihkuja koskevat tulokset esitellään binäärimallin kontekstissa. Kokonaisuutena johdanto palvelee suppeana oppaana, joka esittelee tarvittavan fysiikan ja tarpeelliset numeeriset menetelmät mustien aukkojen binäärijärjestelmän ymmärtämiseen ja simulointiin. Tätä tarkoitusta varten johdanto yhdistää sekä perustuloksia että joitakin syvällisempiä tuloksia laajoilta fysiikan osa-alueilta kuten suhteellisuusteoriasta ja säteilyhydrodynamiikasta. Johdannon sisältämän materiaalin avulla väitöskirjan julkaisut, ja niiden esittämät tulokset, ovat hyvin ymmärrettävissä. Väitöskirjan julkaisuista ensimmäinen esittelee uusia OJ287-systeemistä saatuja havaintopisteitä, jotka on paikallistettu Harvardin yliopiston observatorion arkiston valokuvauslevyiltä. OJ287:n vuonna 1900 tapahtunut purkaus nähdään ensimmäistä kertaa näissä havaintopisteissä. Uudet havaintopisteet mahdollistivat myös vuoden 1913 purkauksen alun ajoittamisen tarkemmin kuin aiemmin oli mahdollista. Havaitut purkaukset mallinnettiin onnistuneesti simuloimalla OJ287-järjestelmän mustien aukkojen paria ja kertymäkiekkoa. Julkaisussa II käsitellään mekanismeja OJ287:n sekundäärisen mustan aukon spinin kasvamiseen vuorovaikutuksessa primäärin kertymäkiekon ja systeemin magneettikenttien kanssa. Julkaisussa arvioidaan maksimispinin saavuttamisen ja spinin suunnan vakiintumisen aikaskaalat kummallakin mekanismilla. Tutkimuksessa havaitaan sekundäärin spinin olevan todennäköisesti suuri. Julkaisu III esittelee OJ287-systeemissä maaliskuussa 2013 tapahtuneen purkauksen. Purkauksen havaittiin muistuttavan vuosina 1993 ja 2004 tapahtuneita purkauksia, joita kutsutaan yhteisnimityksellä prekursoripurkaus (precursor outburst). Julkaisussa esitellään purkauksen synnylle mekanismi, jossa OJ287-systeemin sekundäärinen musta aukko osuu primäärisen mustan aukon kertymäkiekon koronassa olevaan kaasupilveen. Mekanismin avulla johdetaan arviot prekursoripurkausten kirkkaudelle ja aikaskaalalle. Julkaisussa johdetaan myös ennuste seuraavan prekursoripurkauksen ajankohdalle. Julkaisussa IV käytetään vuosina 2004–2006 kerättyjä havaintoja OJ287- systeemistä lyhyiden jaksollisuuksien etsintään. Julkaisussa varmennetaan systeemissä esiintyvä n. 50 päivän kvasiperiodisuus. Lisäksi tilastollisesti merkittävät 250 päivän ja 3,5 päivän jaksollisuudet havaitaan. Julkaisussa esitetään malli, jossa primäärisen mustan aukon kertymäkiekossa oleva spiraalitiheysaalto aiheuttaa 50 päivän jaksollisuuden. Mallista tehty numeerinen simulaatio tukee tulosta. Systeemin relativistisen suihkun emittoima aikadilatoitunut säteily esitetään aiheuttajaksi 3,5 päivän jaksollisuusaikaskaalalle. Julkaisussa V sovitetaan kierresuihkumalli OJ287-systeemistä tehtyihin optisiin havaintoihin ja millimetri- sekä senttimetriaallonpituuden radiohavaintoihin. Suihkun rakenteen havaitaan olevan kaksijakoinen ja koostuvan ytimestä ja kuoresta. Suihkun kuorella on merkittävästi pienempi Lorentzin gamma-tekijä kuin suihkun ytimellä. Kuoren avautumiskulma ja Lorentztekijä sekä suihkun kierteen aallonpituus raportoidaan julkaisussa ensimmäistä kertaa.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
Decisions taken in modern organizations are often multi-dimensional, involving multiple decision makers and several criteria measured on different scales. Multiple Criteria Decision Making (MCDM) methods are designed to analyze and to give recommendations in this kind of situations. Among the numerous MCDM methods, two large families of methods are the multi-attribute utility theory based methods and the outranking methods. Traditionally both method families require exact values for technical parameters and criteria measurements, as well as for preferences expressed as weights. Often it is hard, if not impossible, to obtain exact values. Stochastic Multicriteria Acceptability Analysis (SMAA) is a family of methods designed to help in this type of situations where exact values are not available. Different variants of SMAA allow handling all types of MCDM problems. They support defining the model through uncertain, imprecise, or completely missing values. The methods are based on simulation that is applied to obtain descriptive indices characterizing the problem. In this thesis we present new advances in the SMAA methodology. We present and analyze algorithms for the SMAA-2 method and its extension to handle ordinal preferences. We then present an application of SMAA-2 to an area where MCDM models have not been applied before: planning elevator groups for high-rise buildings. Following this, we introduce two new methods to the family: SMAA-TRI that extends ELECTRE TRI for sorting problems with uncertain parameter values, and SMAA-III that extends ELECTRE III in a similar way. An efficient software implementing these two methods has been developed in conjunction with this work, and is briefly presented in this thesis. The thesis is closed with a comprehensive survey of SMAA methodology including a definition of a unified framework.
Resumo:
In this thesis, the magnetic field control of convection instabilities and heat and mass transfer processesin magnetic fluids have been investigated by numerical simulations and theoretical considerations. Simulation models based on finite element and finite volume methods have been developed. In addition to standard conservation equations, themagnetic field inside the simulation domain is calculated from Maxwell equations and the necessary terms to take into account for the magnetic body force and magnetic dissipation have been added to the equations governing the fluid motion.Numerical simulations of magnetic fluid convection near the threshold supportedexperimental observations qualitatively. Near the onset of convection the competitive action of thermal and concentration density gradients leads to mostly spatiotemporally chaotic convection with oscillatory and travelling wave regimes, previously observed in binary mixtures and nematic liquid crystals. In many applications of magnetic fluids, the heat and mass transfer processes including the effects of external magnetic fields are of great importance. In addition to magnetic fluids, the concepts and the simulation models used in this study may be applied also to the studies of convective instabilities in ordinary fluids as well as in other binary mixtures and complex fluids.
Resumo:
This thesis gives an overview of the use of the level set methods in the field of image science. The similar fast marching method is discussed for comparison, also the narrow band and the particle level set methods are introduced. The level set method is a numerical scheme for representing, deforming and recovering structures in an arbitrary dimensions. It approximates and tracks the moving interfaces, dynamic curves and surfaces. The level set method does not define how and why some boundary is advancing the way it is but simply represents and tracks the boundary. The principal idea of the level set method is to represent the N dimensional boundary in the N+l dimensions. This gives the generality to represent even the complex boundaries. The level set methods can be powerful tools to represent dynamic boundaries, but they can require lot of computing power. Specially the basic level set method have considerable computational burden. This burden can be alleviated with more sophisticated versions of the level set algorithm like the narrow band level set method or with the programmable hardware implementation. Also the parallel approach can be used in suitable applications. It is concluded that these methods can be used in a quite broad range of image applications, like computer vision and graphics, scientific visualization and also to solve problems in computational physics. Level set methods and methods derived and inspired by it will be in the front line of image processing also in the future.
Resumo:
Main purpose of this thesis is to introduce a new lossless compression algorithm for multispectral images. Proposed algorithm is based on reducing the band ordering problem to the problem of finding a minimum spanning tree in a weighted directed graph, where set of the graph vertices corresponds to multispectral image bands and the arcs’ weights have been computed using a newly invented adaptive linear prediction model. The adaptive prediction model is an extended unification of 2–and 4–neighbour pixel context linear prediction schemes. The algorithm provides individual prediction of each image band using the optimal prediction scheme, defined by the adaptive prediction model and the optimal predicting band suggested by minimum spanning tree. Its efficiency has been compared with respect to the best lossless compression algorithms for multispectral images. Three recently invented algorithms have been considered. Numerical results produced by these algorithms allow concluding that adaptive prediction based algorithm is the best one for lossless compression of multispectral images. Real multispectral data captured from an airplane have been used for the testing.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
The general striving to bring down the number of municipal landfills and to increase the reuse and recycling of waste-derived materials across the EU supports the debates concerning the feasibility and rationality of waste management systems. Substantial decrease in the volume and mass of landfill-disposed waste flows can be achieved by directing suitable waste fractions to energy recovery. Global fossil energy supplies are becoming more and more valuable and expensive energy sources for the mankind, and efforts to save fossil fuels have been made. Waste-derived fuels offer one potential partial solution to two different problems. First, waste that cannot be feasibly re-used or recycled is utilized in the energy conversion process according to EU’s Waste Hierarchy. Second, fossil fuels can be saved for other purposes than energy, mainly as transport fuels. This thesis presents the principles of assessing the most sustainable system solution for an integrated municipal waste management and energy system. The assessment process includes: · formation of a SISMan (Simple Integrated System Management) model of an integrated system including mass, energy and financial flows, and · formation of a MEFLO (Mass, Energy, Financial, Legislational, Other decisionsupport data) decision matrix according to the selected decision criteria, including essential and optional decision criteria. The methods are described and theoretical examples of the utilization of the methods are presented in the thesis. The assessment process involves the selection of different system alternatives (process alternatives for treatment of different waste fractions) and comparison between the alternatives. The first of the two novelty values of the utilization of the presented methods is the perspective selected for the formation of the SISMan model. Normally waste management and energy systems are operated separately according to the targets and principles set for each system. In the thesis the waste management and energy supply systems are considered as one larger integrated system with one primary target of serving the customers, i.e. citizens, as efficiently as possible in the spirit of sustainable development, including the following requirements: · reasonable overall costs, including waste management costs and energy costs; · minimum environmental burdens caused by the integrated waste management and energy system, taking into account the requirement above; and · social acceptance of the selected waste treatment and energy production methods. The integrated waste management and energy system is described by forming a SISMan model including three different flows of the system: energy, mass and financial flows. By defining the three types of flows for an integrated system, the selected factor results needed in the decision-making process of the selection of waste management treatment processes for different waste fractions can be calculated. The model and its results form a transparent description of the integrated system under discussion. The MEFLO decision matrix has been formed from the results of the SISMan model, combined with additional data, including e.g. environmental restrictions and regional aspects. System alternatives which do not meet the requirements set by legislation can be deleted from the comparisons before any closer numerical considerations. The second novelty value of this thesis is the three-level ranking method for combining the factor results of the MEFLO decision matrix. As a result of the MEFLO decision matrix, a transparent ranking of different system alternatives, including selection of treatment processes for different waste fractions, is achieved. SISMan and MEFLO are methods meant to be utilized in municipal decision-making processes concerning waste management and energy supply as simple, transparent and easyto- understand tools. The methods can be utilized in the assessment of existing systems, and particularly in the planning processes of future regional integrated systems. The principles of SISMan and MEFLO can be utilized also in other environments, where synergies of integrating two (or more) systems can be obtained. The SISMan flow model and the MEFLO decision matrix can be formed with or without any applicable commercial or free-of-charge tool/software. SISMan and MEFLO are not bound to any libraries or data-bases including process information, such as different emission data libraries utilized in life cycle assessments.