18 resultados para sample analysis
Resumo:
This thesis concerns the analysis of epidemic models. We adopt the Bayesian paradigm and develop suitable Markov Chain Monte Carlo (MCMC) algorithms. This is done by considering an Ebola outbreak in the Democratic Republic of Congo, former Zaïre, 1995 as a case of SEIR epidemic models. We model the Ebola epidemic deterministically using ODEs and stochastically through SDEs to take into account a possible bias in each compartment. Since the model has unknown parameters, we use different methods to estimate them such as least squares, maximum likelihood and MCMC. The motivation behind choosing MCMC over other existing methods in this thesis is that it has the ability to tackle complicated nonlinear problems with large number of parameters. First, in a deterministic Ebola model, we compute the likelihood function by sum of square of residuals method and estimate parameters using the LSQ and MCMC methods. We sample parameters and then use them to calculate the basic reproduction number and to study the disease-free equilibrium. From the sampled chain from the posterior, we test the convergence diagnostic and confirm the viability of the model. The results show that the Ebola model fits the observed onset data with high precision, and all the unknown model parameters are well identified. Second, we convert the ODE model into a SDE Ebola model. We compute the likelihood function using extended Kalman filter (EKF) and estimate parameters again. The motivation of using the SDE formulation here is to consider the impact of modelling errors. Moreover, the EKF approach allows us to formulate a filtered likelihood for the parameters of such a stochastic model. We use the MCMC procedure to attain the posterior distributions of the parameters of the SDE Ebola model drift and diffusion parts. In this thesis, we analyse two cases: (1) the model error covariance matrix of the dynamic noise is close to zero , i.e. only small stochasticity added into the model. The results are then similar to the ones got from deterministic Ebola model, even if methods of computing the likelihood function are different (2) the model error covariance matrix is different from zero, i.e. a considerable stochasticity is introduced into the Ebola model. This accounts for the situation where we would know that the model is not exact. As a results, we obtain parameter posteriors with larger variances. Consequently, the model predictions then show larger uncertainties, in accordance with the assumption of an incomplete model.
Resumo:
The purpose of this thesis is to focus on credit risk estimation. Different credit risk estimation methods and characteristics of credit risk are discussed. The study is twofold, including an interview of a credit risk specialist and a quantitative section. Quantitative section applies the KMV model to estimate credit risk of 12 sample companies from three different industries: automobile, banking and financial sector and technology. Timeframe of the estimation is one year. On the basis of the KMV model and the interview, implications for analysis of credit risk are discussed. The KMV model yields consistent results with the existing credit ratings. However, banking and financial sector requires calibration of the model due to high leverage of the industry. Credit risk is considerably driven by leverage, value and volatility of assets. Credit risk models produce useful information on credit worthiness of a business. Yet, quantitative models often require qualitative support in the decision-making situation.
Resumo:
Over time the demand for quantitative portfolio management has increased among financial institutions but there is still a lack of practical tools. In 2008 EDHEC Risk and Asset Management Research Centre conducted a survey of European investment practices. It revealed that the majority of asset or fund management companies, pension funds and institutional investors do not use more sophisticated models to compensate the flaws of the Markowitz mean-variance portfolio optimization. Furthermore, tactical asset allocation managers employ a variety of methods to estimate return and risk of assets, but also need sophisticated portfolio management models to outperform their benchmarks. Recent development in portfolio management suggests that new innovations are slowly gaining ground, but still need to be studied carefully. This thesis tries to provide a practical tactical asset allocation (TAA) application to the Black–Litterman (B–L) approach and unbiased evaluation of B–L models’ qualities. Mean-variance framework, issues related to asset allocation decisions and return forecasting are examined carefully to uncover issues effecting active portfolio management. European fixed income data is employed in an empirical study that tries to reveal whether a B–L model based TAA portfolio is able outperform its strategic benchmark. The tactical asset allocation utilizes Vector Autoregressive (VAR) model to create return forecasts from lagged values of asset classes as well as economic variables. Sample data (31.12.1999–31.12.2012) is divided into two. In-sample data is used for calibrating a strategic portfolio and the out-of-sample period is for testing the tactical portfolio against the strategic benchmark. Results show that B–L model based tactical asset allocation outperforms the benchmark portfolio in terms of risk-adjusted return and mean excess return. The VAR-model is able to pick up the change in investor sentiment and the B–L model adjusts portfolio weights in a controlled manner. TAA portfolio shows promise especially in moderately shifting allocation to more risky assets while market is turning bullish, but without overweighting investments with high beta. Based on findings in thesis, Black–Litterman model offers a good platform for active asset managers to quantify their views on investments and implement their strategies. B–L model shows potential and offers interesting research avenues. However, success of tactical asset allocation is still highly dependent on the quality of input estimates.