18 resultados para salmonella


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central goal of food safety policy in the European Union (EU) is to protect consumer health by guaranteeing a high level of food safety throughout the food chain. This goal can in part be achieved by testing foodstuffs for the presence of various chemical and biological hazards. The aim of this study was to facilitate food safety testing by providing rapid and user-friendly methods for the detection of particular food-related hazards. Heterogeneous competitive time-resolved fluoroimmunoassays were developed for the detection of selected veterinary residues, that is coccidiostat residues, in eggs and chicken liver. After a simplified sample preparation procedure, the immunoassays were performed either in manual format with dissociation-enhanced measurement or in automated format with pre-dried assay reagents and surface measurement. Although the assays were primarily designed for screening purposes providing only qualitative results, they could also be used in a quantitative mode. All the developed assays had good performance characteristics enabling reliable screening of samples at concentration levels required by the authorities. A novel polymerase chain reaction (PCR)-based assay system was developed for the detection of Salmonella spp. in food. The sample preparation included a short non-selective pre-enrichment step, after which the target cells were collected with immunomagnetic beads and applied to PCR reaction vessels containing all the reagents required for the assay in dry form. The homogeneous PCR assay was performed with a novel instrument platform, GenomEra, and the qualitative assay results were automatically interpreted based on end-point time-resolved fluorescence measurements and cut-off values. The assay was validated using various food matrices spiked with sub-lethally injured Salmonella cells at levels of 1-10 colony forming units (CFU)/25 g of food. The main advantage of the system was the exceptionally short time to result; the entire process starting from the pre-enrichment and ending with the PCR result could be completed in eight hours. In conclusion, molecular methods using state-of-the-art assay techniques were developed for food safety testing. The combination of time-resolved fluorescence detection and ready-to-use reagents enabled sensitive assays easily amenable to automation. Consequently, together with the simplified sample preparation, these methods could prove to be applicable in routine testing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive arthritis (ReA) is an inflammatory joint disease, which belongs to the group of Spondyloarthritis (SpA). It may occur after infections with certain gram-negative bacteria such as Salmonella and Yersinia. SpAs are strongly associated with the human leucocyte antigen (HLA)-B27. Despite active research, the mechanism by which HLA-B27 causes disease susceptibility is still unknown. However, HLA-B27 has a tendency to misfold during assembly. It is possible that the misfolding of HLA-B27 could alter signaling pathways and/or molecules involved in inflammatory response in cells. We have earlier discovered that in HLA-B27-positive cells the interaction between the host and causative bacteria is disturbed. Our recent studies indicate that the expression of HLA-B27 may alter certain signaling molecules by disturbing their activation. The aim of this study was to investigate whether the expression of HLA-B27 disturbs the signaling molecules, especially the phosphorylation of transcription factor STAT1. STAT1 is an important mediator of inflammatory responses. Our results show that the phosphorylation of the STAT1 is significantly altered in HLA-B27-expressing U937 monocytic cells compared with control cells. STAT1 tyrosine 701 is more strongly phosphorylated in HLAB27- expressing cells; whereas the phosphorylation of STAT1 serine 727 is prolonged. Phosphorylation of STAT1 was discovered to be dependent on protein kinase PKR. Furthermore, we found out that the expression of posttranscriptional gene regulator HuR was altered in HLA-B27-expressing cells. We also detected that HLA-B27-positive cells secrete more interleukin 6, which is an important mediator of inflammation. These results help to understand how HLA-B27 may confer susceptibility to SpAs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive arthritis (ReA) is an inflammatory joint disease triggered by certain bacterial infections e.g. gastroenteritis caused by Salmonella. ReA is strongly associated to HLA-B27. However, the mechanism behind this association is unknown but it is suggested that the bacteria or bacterial compartments persist in the body. In this study, it was investigated whether the intracellular signaling is altered in HLA-B27- transfected U937 monocytic macrophages. Moreover, the contribution of HLA–B27 heavy chain (HC) misfolding was of interest. The study revealed that p38 activity plays a crucial role in controlling intracellular Salmonella Enteritidis in U937 cells. The replication of intracellular bacteria was dependent on p38 kinase and the activity of p38 was dysregulated in HLA-B27- transfected cells expressing misfolding heavy chains (HCs). Also the double-stranded RNA -dependent kinase (PKR) that modifies p38 signaling was overexpressed and hypophosphorylated upon infection and lipopolysaccharide stimulation. The expression of CCAAT enhancer binding protein beta (C/EBPβ) was found to be increased after infection and stimulation. Increased amount of full length human antigen R (HuR), disturbed HuR cleavage and reduced dependence on PKR after infection were observed. All the findings were linked to HLA-B27 HCs containing misfoldingassociated glutamic acid 45 (Glu45) at the peptide binding groove. The results indicate that the expression of HLA-B27 modulates the intracellular environment of U937 monocytic macrophages by altering signaling. This phenomenon is at least partially associated to the HLA-B27 misfolding. These observations offer a novel explanation how HLA-B27 may modulate inflammatory response induced by ReA-triggering bacteria.