22 resultados para photosynthetic acclimation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria are the only prokaryotic organisms performing oxygenic photosynthesis. They comprise a diverse and versatile group of organisms in aquatic and terrestrial environments. Increasing genomic and proteomic data launches wide possibilities for their employment in various biotechnical applications. For example, cyanobacteria can use solar energy to produce H2. There are three different enzymes that are directly involved in cyanobacterial H2 metabolism: nitrogenase (nif) which produces hydrogen as a byproduct in nitrogen fixation; bidirectional hydrogenase (hox) which functions both in uptake and in production of H2; and uptake hydrogenase (hup) which recycles the H2 produced by nitrogenase back for the utilization of the cell. Cyanobacterial strains from University of Helsinki Cyanobacteria Collection (UHCC), isolated from the Baltic Sea and Finnish lakes were screened for efficient H2 producers. Screening about 400 strains revealed several promising candidates producing similar amounts of H2 (during light) as the ΔhupL mutant of Anabaena PCC 7120, which is specifically engineered to produce higher amounts of H2 by the interruption of uptake hydrogenase. The optimal environmental conditions for H2 photoproduction were significantly different between various cyanobacterial strains. All suitable strains revealed during screening were N2-fixing, filamentous and heterocystous. The top ten H2 producers were characterized for the presence and activity of the enzymes involved in H2 metabolism. They all possess the genes encoding the conventional nitrogenase (nifHDK1). However, the high H2 photoproduction rates of these strains were shown not to be directly associated with the maximum capacities of highly active nitrogenase or bidirectional hydrogenase. Most of the good producers possessed a highly active uptake hydrogenase, which has been considered as an obstacle for efficient H2 production. Among the newly revealed best H2 producing strains, Calothrix 336/3 was chosen for further, detailed characterization. Comparative analysis of the structure of the nif and hup operons encoding the nitrogenase and uptake hydrogenase enzymes respectively showed minor differences between Calothrix 336/3 and other N2-fixing model cyanobacteria. Calothrix 336/3 is a filamentous, N2-fixing cyanobacterium with ellipsoidal, terminal heterocysts. A common feature of Calothrix 336/3 is that the cells readily adhere to substrates. To make use of this feature, and to additionally improve H2 photoproduction capacity of the Calothrix 336/3 strain, an immobilization technique was applied. The effects of immobilization within thin alginate films were evaluated by examining the photoproduction of H2 of immobilized Calothrix 336/3 in comparison to model strains, the Anabaena PCC 7120 and its ΔhupL mutant. In order to achieve optimal H2 photoproduction, cells were kept under nitrogen starved conditions (Ar atmosphere) to ensure the selective function of nitrogenase in reducing protons to H2. For extended H2 photoproduction, cells require CO2 for maintenance of photosynthetic activity and recovery cycles to fix N2. Application of regular H2 production and recovery cycles, Ar or air atmospheres respectively, resulted in prolongation of H2 photoproduction in both Calothrix 336/3 and the ΔhupL mutant of Anabaena PCC 7120. However, recovery cycles, consisting of air supplemented with CO2, induced a strong C/N unbalance in the ΔhupL mutant leading to a decrease in photosynthetic activity, although total H2 yield was still higher compared to the wild-type strain. My findings provide information about the diversity of cyanobacterial H2 capacities and mechanisms and provide knowledge of the possibilities of further enhancing cyanobacterial H2 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyanobacteria are well-known for their role in the global production of O2 via photosynthetic water oxidation. However, with the use of light energy, cyanobacteria can also reduce O2. In my thesis work, I have investigated the impact of O2 photoreduction on protection of the photosynthetic apparatus as well as the N2-fixing machinery. Photosynthetic light reactions produce intermediate radicals and reduced electron carriers, which can easily react with O2 to generate various reactive oxygen species. To avoid prolonged reduction of photosynthetic components, cyanobacteria use “electron valves” that dissipate excess electrons from the photosynthetic electron transfer chain in a harmless way. In Synechocystis sp. PCC 6803, flavodiiron proteins Flv1 and Flv3 comprise a powerful electron sink redirecting electrons from the acceptor side of Photosystem I to O2 and reducing it directly to water. In this work, I demonstrate that upon Ci-depletion Flv1/3 can dissipate up to 60% of the electrons delivered from Photosystem II. O2 photoreduction by Flv1/3 was shown to be vital for cyanobacteria in natural aquatic environments and deletion of Flv1/3 was lethal for both Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120 under fluctuating light conditions. The lethal phenotype observed in the absence of Flv1/3 results from oxidative damage to Photosystem I, which appeared to be a primary target of reactive oxygen species produced upon sudden increases in light intensity. Importantly, cyanobacteria also possess other O2 photoreduction pathways which can protect the photosynthetic apparatus. This study demonstrates that respiratory terminal oxidases are also capable of initiating O2 photoreduction in mutant cells lacking the Flv1/3 proteins and grown under fluctuating light. Photoreduction of O2 by Rubisco was also shown in Ci-depleted cells of the mutants lacking Flv1/3, and thus provided the first evidence for active photorespiratory gas-exchange in cyanobacteria. Nevertheless, and despite the existence of other O2 photoreduction pathways, the Flv1/3 route appears to be the most robust and rapid system of photoprotection. Several groups of cyanobacteria are capable of N2 fixation. Filamentous heterocystous N2- fixing species, such as Anabaena sp. PCC 7120, are able to differentiate specialised cells called heterocysts for this purpose. In contrast to vegetative cells which perform oxygenic photosynthesis, heterocysts maintain a microoxic environment for the proper function of the nitrogenase enzyme, which is extremely sensitive to O2. The genome of Anabaena sp. PCC 7120 harbors two copies of genes encoding Flv1 and Flv3 proteins, designated as “A” and “B” forms. In this thesis work, I demonstrate that Flv1A and Flv3A are expressed only in the vegetative cells of filaments, whilst Flv1B and Flv3B are localized exclusively in heterocysts. I further revealed that the Flv3B protein is most responsible for the photoreduction of O2 in heterocysts, and that this reaction plays an important role in protection of the N2-fixing machinery and thus, the provision of filaments with fixed nitrogen. The function of the Flv1B protein remains to be elucidated; however the involvement of this protein in electron transfer reactions is feasible. Evidence provided in this thesis indicates the presence of a great diversity of O2 photoreduction reactions in cyanobacterial cells. These reactions appear to be crucial for the photoprotection of both photosynthesis and N2 fixation processes in an oxygenic environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Harmful algal blooms (HABs) are events caused by the massive proliferation of microscopic, often photosynthetic organisms that inhabit both fresh and marine waters. Although HABs are essentially a natural phenomenon, they now cause worldwide concern. Recent anthropogenic effects, such as climate change and eutrophication via nutrient runoff, can be seen in their increased prevalence and severity. Cyanobacteria and dinoflagellates are often the causative organisms of HABs. In addition to adverse effects caused by the sheer biomass, certain species produce highly potent toxic compounds: hepatotoxic microcystins are produced exclusively by cyanobacteria and neurotoxic saxitoxins, also known as paralytic shellfish toxins (PSTs), by both cyanobacteria and dinoflagellates. Specific biosynthetic genes in the cyanobacterial genomes direct the production of microcystin and paralytic shellfish toxins. Recently also the first paralytic shellfish toxin gene sequences from dinoflagellate genomes have been elucidated. The public health risks presented by HABs are evident, but the monitoring and prediction of toxic events is challenging. Characterization of the genetic background of toxin biosynthesis, including that of microcystins and paralytic shellfish toxins, has made it possible to develop highly sensitive molecular tools which have shown promise in the monitoring and study of potentially toxic microalgae. In this doctoral work, toxin-specific genes were targeted in the developed PCR and qPCR assays for the detection and quantification of potentially toxic cyanobacteria and dinoflagellates in the environment. The correlation between the copy numbers of the toxin biosynthesis genes and toxin production were investigated to assess whether the developed methods could be used to predict toxin concentrations. The nature of the correlation between gene copy numbers and amount of toxin produced varied depending on the targeted gene and the producing organism. The combined mcyB copy numbers of three potentially microcystin-producing cyanobacterial genera showed significant positive correlation to the observed total toxin production. However, the presence of PST-specific sxtA, sxtG, and sxtB genes of cyanobacterial origin was found to be a poor predictor of toxin production in the studied area. Conversely, the dinoflagellate sxtA4 was a good qualitative indicator of a neurotoxic bloom both in the laboratory and in the field, and population densities reflected well the observed toxin concentrations. In conclusion, although the specificity of each potential targeted toxin biosynthesis gene must be assessed individually during method development, the results obtained in this doctoral study support the use of quantitative PCR -based approaches in the monitoring of toxic cyanobacteria and dinoflagellates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lichens are symbiotic organisms, which consist of the fungal partner and the photosynthetic partner, which can be either an alga or a cyanobacterium. In some lichen species the symbiosis is tripartite, where the relationship includes both an alga and a cyanobacterium alongside the primary symbiont, fungus. The lichen symbiosis is an evolutionarily old adaptation to life on land and many extant fungal species have evolved from lichenised ancestors. Lichens inhabit a wide range of habitats and are capable of living in harsh environments and on nutrient poor substrates, such as bare rocks, often enduring frequent cycles of drying and wetting. Most lichen species are desiccation tolerant, and they can survive long periods of dehydration, but can rapidly resume photosynthesis upon rehydration. The molecular mechanisms behind lichen desiccation tolerance are still largely uncharacterised and little information is available for any lichen species at the genomic or transcriptomic level. The emergence of the high-throughput next generation sequencing (NGS) technologies and the subsequent decrease in the cost of sequencing new genomes and transcriptomes has enabled non-model organism research on the whole genome level. In this doctoral work the transcriptome and genome of the grey reindeer lichen, Cladonia rangiferina, were sequenced, de novo assembled and characterised using NGS and traditional expressed sequence tag (EST) technologies. RNA extraction methods were optimised to improve the yield and quality of RNA extracted from lichen tissue. The effects of rehydration and desiccation on C. rangiferina gene expression on whole transcriptome level were studied and the most differentially expressed genes were identified. The secondary metabolites present in C. rangiferina decreased the quality – integrity, optical characteristics and utility for sensitive molecular biological applications – of the extracted RNA requiring an optimised RNA extraction method for isolating sufficient quantities of high-quality RNA from lichen tissue in a time- and cost-efficient manner. The de novo assembly of the transcriptome of C. rangiferina was used to produce a set of contiguous unigene sequences that were used to investigate the biological functions and pathways active in a hydrated lichen thallus. The de novo assembly of the genome yielded an assembly containing mostly genes derived from the fungal partner. The assembly was of sufficient quality, in size similar to other lichen-forming fungal genomes and included most of the core eukaryotic genes. Differences in gene expression were detected in all studied stages of desiccation and rehydration, but the largest changes occurred during the early stages of rehydration. The most differentially expressed genes did not have any annotations, making them potentially lichen-specific genes, but several genes known to participate in environmental stress tolerance in other organisms were also identified as differentially expressed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In oxygenic photosynthesis, the highly oxidizing reactions of water splitting produce reactive oxygen species (ROS) and other radicals that could damage the photosynthetic apparatus and affect cell viability. Under particular environmental conditions, more electrons are produced in water oxidation than can be harmlessly used by photochemical processes for the reduction of metabolic electron sinks. In these circumstances, the excess of electrons can be delivered, for instance, to O2, resulting in the production of ROS. To prevent detrimental reactions, a diversified assortment of photoprotection mechanisms has evolved in oxygenic photosynthetic organisms. In this thesis, I focus on the role of alternative electron transfer routes in photoprotection of the cyanobacterium Synechocystis sp. PCC 6803. Firstly, I discovered a novel subunit of the NDH-1 complex, NdhS, which is necessary for cyclic electron transfer around Photosystem I, and provides tolerance to high light intensities. Cyclic electron transfer is important in modulating the ATP/NADPH ratio under stressful environmental conditions. The NdhS subunit is conserved in many oxygenic phototrophs, such as cyanobacteria and higher plants. NdhS has been shown to link linear electron transfer to cyclic electron transfer by forming a bridge for electrons accumulating in the Ferredoxin pool to reach the NDH-1 complexes. Secondly, I thoroughly investigated the role of the entire flv4-2 operon in the photoprotection of Photosystem II under air level CO2 conditions and varying light intensities. The operon encodes three proteins: two flavodiiron proteins Flv2 and Flv4 and a small Sll0218 protein. Flv2 and Flv4 are involved in a novel electron transport pathway diverting electrons from the QB pocket of Photosystem II to electron acceptors, which still remain unknown. In my work, it is shown that the flv4-2 operon-encoded proteins safeguard Photosystem II activity by sequestering electrons and maintaining the oxidized state of the PQ pool. Further, Flv2/Flv4 was shown to boost Photosystem II activity by accelerating forward electron flow, triggered by an increased redox potential of QB. The Sll0218 protein was shown to be differentially regulated as compared to Flv2 and Flv4. Sll0218 appeared to be essential for Photosystem II accumulation and was assigned a stabilizing role for Photosystem II assembly/repair. It was also shown to be responsible for optimized light-harvesting. Thus, Sll0218 and Flv2/Flv4 cooperate to protect and enhance Photosystem II activity. Sll0218 ensures an increased number of active Photosystem II centers that efficiently capture light energy from antennae, whilst the Flv2/Flv4 heterodimer provides a higher electron sink availability, in turn, promoting a safer and enhanced activity of Photosystem II. This intertwined function was shown to result in lowered singlet oxygen production. The flv4-2 operon-encoded photoprotective mechanism disperses excess excitation pressure in a complimentary manner with the Orange Carotenoid Protein-mediated non-photochemical quenching. Bioinformatics analyses provided evidence for the loss of the flv4-2 operon in the genomes of cyanobacteria that have developed a stress inducible D1 form. However, the occurrence of various mechanisms, which dissipate excitation pressure at the acceptor side of Photosystem II was revealed in evolutionarily distant clades of organisms, i.e. cyanobacteria, algae and plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Humans are profoundly changing aquatic environments through climate change and the release of nutrients and chemicals. To understand the effects of these changes on natural populations, knowledge on individuals’ environmental responses is needed. At the molecular level, the environmental responses are partly mediated by chances in messenger RNA and protein levels. In this thesis I study messenger RNA and protein responses to an assortment of environmental stressors in fish. As daily (diel) rhythms are known to be ubiquitous in different tissues, I particularly focus on diel patterns in the responses. The studied species are the three-spined stickleback (Gasterosteus aculeatus L.) and the Arctic char (Salvelinus alpinus L.), both of which have circumpolar distribution in the Northern hemisphere. In the first two studies, three-spined sticklebacks were exposed to both the non-steroidal anti-inflammatory drug diclofenac and low-oxygen conditions (hypoxia), and their responses measured at separate time points in the liver and gills. The results show how the seemingly unrelated environmental stressors, hypoxia and anti-inflammatory drugs, can have harmful combined effects that differ from the effects of each stressor alone. Moreover, both stressors disturbed natural diel patterns in gene expression. In the third study, I studied the responses of three-spined sticklebacks to two test chemicals: one used in hormonal medicine (17α-ethinyl-oestradiol) and one used as a plasticizer and solvent chemical (di-n-butyl phthalate). The results suggest that the phthalate can affect genes related to spermatogenesis in fish testes, while estrogen-mimicking compounds can lead to numerous disturbances in the endocrine system. In the final study, the temperature-dependence of diel rhythms in messenger RNA levels were evaluated in the liver tissue of the Arctic char, a cold-adapted salmonid. The results show that cold acclimation repressed diel rhythms in gene expression compared to warm-acclimated fish, in which the expression of hundreds of genes was rhythmic, suggesting the circadian clock of the Arctic fish species can be sensitive to temperature. Overall, the results of the thesis indicate that fishes’ responses to abiotic factors interact with their diel rhythms, and more studies on the consequences of these interactions are needed to comprehensively understand human impacts on ecosystems.