27 resultados para nutrient retranslocation
Resumo:
Abstract
Resumo:
Selostus: Aurattoman viljelyn vaikutus eroosioon ja ravinnehuuhtoumiin eteläsuomlaisella, savimaalla sijaitsevalla pellolla
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
The objective of my thesis is to assess mechanisms of ecological community control in macroalgal communities in the Baltic Sea. In the top-down model, predatory fish feed on invertebrate mesograzers, releasing algae partly from grazing pressure. Such a reciprocal relationship is called trophic cascade. In the bottom-up model, nutrients increase biomass in the food chain. The nutrients are first assimilated by algae and, via food chain, increase also abundance of grazers and predators. Previous studies on oceanic shores have described these two regulative mechanisms in the grazer - alga link, but how they interact in the trophic cascades from fish to algae is still inadequately known. Because the top-down and bottom-up mechanisms are predicted to depend on environmental disturbances, such as wave stress and light, I have studied these models at two distinct water depths. There are five factorial field experiments behind the thesis, which were all conducted in the Finnish Archipelago Sea. In all the experiments, I studied macroalgal colonization - either density, filament length or biomass - on submerged colonization substrates. By excluding predatory fish and mesograzers from the algal communities, the studies compared the strength of the top-down control to natural algal communities. A part of the experimental units were, in addition, exposed to enriched nitrogen and phosphorus concentrations, which enabled testing of bottom-up control. These two models of community control were further investigated in shallow (<1 m) and deep (ca. 3 m) water. Moreover, the control mechanisms were also expected to depend on grazer species. Therefore different grazer species were enclosed into experimental units and their impacts on macroalgal communities were followed specifically. The community control in the Baltic rocky shores was found to follow theoretical predictions, which have not been confirmed by field studies before. Predatory fish limited grazing impact, which was seen as denser algal communities and longer algal filaments. Nutrient enrichment increased density and filament length of annual algae and, thus, changed the species composition of the algal community. The perennial alga Fucus vesiculosusA and the red alga Ceramium tenuicorne suffered from the increased nutrient availabilities. The enriched nutrient conditions led to denser grazer fauna, thereby causing strong top-down control over both the annual and perennial macroalgae. The strength of the top-down control seemed to depend on the density and diversity of grazers and predators as well as on the species composition of macroalgal assemblages. The nutrient enrichment led to, however, weaker limiting impact of predatory fish on grazer fauna, because fish stocks did not respond as quickly to enhanced resources in the environment as the invertebrate fauna. According to environmental stress model, environmental disturbances weaken the top-down control. For example, on a wave-exposed shore, wave stress causes more stress to animals close to the surface than deeper on the shore. Mesograzers were efficient consumers at both the depths, while predation by fish was weaker in shallow water. Thus, the results supported the environmental stress model, which predicts that environmental disturbance affects stronger the higher a species is in the food chain. This thesis assessed the mechanisms of community control in three-level food chains and did not take into account higher predators. Such predators in the Baltic Sea are, for example, cormorant, seals, white-tailed sea eagle, cod and salmon. All these predatory species were recently or are currently under intensive fishing, hunting and persecution, and their stocks have only recently increased in the region. Therefore, it is possible that future densities of top predators may yet alter the strengths of the controlling mechanisms in the Baltic littoral zone.
Resumo:
Eutrophication caused by anthropogenic nutrient pollution has become one of the most severe threats to water bodies. Nutrients enter water bodies from atmospheric precipitation, industrial and domestic wastewaters and surface runoff from agricultural and forest areas. As point pollution has been significantly reduced in developed countries in recent decades, agricultural non-point sources have been increasingly identified as the largest source of nutrient loading in water bodies. In this study, Lake Säkylän Pyhäjärvi and its catchment are studied as an example of a long-term, voluntary-based, co-operative model of lake and catchment management. Lake Pyhäjärvi is located in the centre of an intensive agricultural area in southwestern Finland. More than 20 professional fishermen operate in the lake area, and the lake is used as a drinking water source and for various recreational activities. Lake Pyhäjärvi is a good example of a large and shallow lake that suffers from eutrophication and is subject to measures to improve this undesired state under changing conditions. Climate change is one of the most important challenges faced by Lake Pyhäjärvi and other water bodies. The results show that climatic variation affects the amounts of runoff and nutrient loading and their timing during the year. The findings from the study area concerning warm winters and their influences on nutrient loading are in accordance with the IPCC scenarios of future climate change. In addition to nutrient reduction measures, the restoration of food chains (biomanipulation) is a key method in water quality management. The food-web structure in Lake Pyhäjärvi has, however, become disturbed due to mild winters, short ice cover and low fish catch. Ice cover that enables winter seining is extremely important to the water quality and ecosystem of Lake Pyhäjärvi, as the vendace stock is one of the key factors affecting the food web and the state of the lake. New methods for the reduction of nutrient loading and the treatment of runoff waters from agriculture, such as sand filters, were tested in field conditions. The results confirm that the filter technique is an applicable method for nutrient reduction, but further development is needed. The ability of sand filters to absorb nutrients can be improved with nutrient binding compounds, such as lime. Long-term hydrological, chemical and biological research and monitoring data on Lake Pyhäjärvi and its catchment provide a basis for water protection measures and improve our understanding of the complicated physical, chemical and biological interactions between the terrestrial and aquatic realms. In addition to measurements carried out in field conditions, Lake Pyhäjärvi and its catchment were studied using various modelling methods. In the calibration and validation of models, long-term and wide-ranging time series data proved to be valuable. Collaboration between researchers, modellers and local water managers further improves the reliability and usefulness of models. Lake Pyhäjärvi and its catchment can also be regarded as a good research laboratory from the point of view of the Baltic Sea. The main problem in both of them is eutrophication caused by excess nutrients, and nutrient loading has to be reduced – especially from agriculture. Mitigation measures are also similar in both cases.
Resumo:
Tämä työ tutkii ja tarkastelee transitio-kokeilua ravinnetaloudessa. Transitio-kokeilu on toimintatutkimusprojekti, joka toteutetaan systeemisen muutoksen ajattelun mukaisesti alhaalta ylöspäin. Ravinnetalous määritetään tarkemmin työn kautta sekä analysoidaan monitaso-perspektiivin näkökulmasta. Ravinnetalous on terminä varsin tuntematon ja tarvitsee enemmän tunnettavuutta laajemman yleisön edessä. Transitio-areenan ja transitio-visioiden kehittäminen ovat työn keskipisteessä, koska ne ovat tärkeimpiä vaiheita transition alkuvaiheessa. Joukko sidosryhmätoimijoita osallistuu transitio areenaan sekä visioiden jatkokehittelyyn. Visio(t) luodaan ensisijaisesti backcasting-menetelmällä, jota myös täydennetään tavanomaisella ennustamisella. Backcasting- menetelmä on osin osallistava ja siinä käytetään ravinteiden planeettarajoja kvantitatiivisina pääperiaatteina, minkä tuloksena myös visiot ovat osin kvantitatiivisia. Transitio areenan kokoaminen ja fasilitointi aiheuttavat hankalia kysymyksiä, jotka tarvitsevat jatko-tutkimusta. Alhaalta-ylöspäin organisoitu transitio-arena houkuttelee niche-toimijoita, mutta epäonnistuu sitouttamaan julkisen vallan toimijoita. Toimintamallin voimasuhteet, politiikka ja transition vakiinnuttaminen tulisivat olla jatko-toimenpiteinä niin tutkimuksessa kuin toiminnassakin.
Resumo:
Biodegradable waste quantities in Lithuania and their potential for the co-treatment in renewable energy and organic fertilizer production are investigated. Two scenarios are formulated to study the differences of the amounts of obtainable energy and fertilizers between different ways of utilization. In the first scenario, only digestion is used, and in the second scenario, other materials than straw are digested, and straw and the solid fraction of sewage sludge digestate are combusted. As a result, the amounts of heat and electricity, as well as the fertilizer amounts in the counties are obtained for both scenarios. Based on this study, the share of renewable energy in Lithuania could be doubled by the co-treatment of different biodegradable materials.