30 resultados para multi-disciplinary design optimisation
Resumo:
Tässä työssä tutkitaan ohjelmistoarkkitehtuurisuunnitteluominaisuuksien vaikutusta erään client-server –arkkitehtuuriin perustuvan mobiilipalvelusovelluksen suunnittelu- ja toteutusaikaan. Kyseinen tutkimus perustuu reaalielämän projektiin, jonka kvalitatiivinen analyysi paljasti arkkitehtuurikompponenttien välisten kytkentöjen merkittävästi vaikuttavan projektin työmäärään. Työn päätavoite oli kvantitatiivisesti tutkia yllä mainitun havainnon oikeellisuus. Tavoitteen saavuttamiseksi suunniteltiin ohjelmistoarkkitehtuurisuunnittelun mittaristo kuvaamaan kyseisen järjestelmän alijärjestelmien arkkitehtuuria ja luotiin kaksi suunniteltua mittaristoa käyttävää, työmäärää (komponentin suunnittelu-, toteutus- ja testausaikojen summa) arvioivaa mallia, joista toinen on lineaarinen ja toinen epälineaarinen. Näiden mallien kertoimet sovitettiin optimoimalla niiden arvot epälineaarista gloobaalioptimointimenetelmää, differentiaalievoluutioalgoritmia, käyttäen, niin että mallien antamat arvot vastasivat parhaiten mitattua työmäärää sekä kaikilla ominaisuuksilla eli attribuuteilla että vain osalla niistä (yksi jätettiin vuorotellen pois). Kun arkkitehtuurikompenttien väliset kytkennät jätettiin malleista pois, mitattujen ja arvoitujen työmäärien välinen ero (ilmaistuna virheenä) kasvoi eräässä tapauksessa 367 % entisestä tarkoittaen sitä, että näin muodostettu malli vastasi toteutusaikoja huonosti annetulla ainestolla. Tämä oli suurin havaitu virhe kaikkien poisjätettyjen ominaisuuksien kesken. Saadun tuloksen perusteella päätettiin, että kyseisen järjestelmän toteutusajat ovat vahvasti riippuvaisia kytkentöjen määrästä, ja näin ollen kytkentöjen määrä oli mitä todennäköisemmin kaikista tärkein työmäärään vaikuttava tekijä tutkitun järjestelmän arkkitehtuurisuunnittelussa.
Resumo:
Within the latest decade high-speed motor technology has been increasingly commonly applied within the range of medium and large power. More particularly, applications like such involved with gas movement and compression seem to be the most important area in which high-speed machines are used. In manufacturing the induction motor rotor core of one single piece of steel it is possible to achieve an extremely rigid rotor construction for the high-speed motor. In a mechanical sense, the solid rotor may be the best possible rotor construction. Unfortunately, the electromagnetic properties of a solid rotor are poorer than the properties of the traditional laminated rotor of an induction motor. This thesis analyses methods for improving the electromagnetic properties of a solid-rotor induction machine. The slip of the solid rotor is reduced notably if the solid rotor is axially slitted. The slitting patterns of the solid rotor are examined. It is shown how the slitting parameters affect the produced torque. Methods for decreasing the harmonic eddy currents on the surface of the rotor are also examined. The motivation for this is to improve the efficiency of the motor to reach the efficiency standard of a laminated rotor induction motor. To carry out these research tasks the finite element analysis is used. An analytical calculation of solid rotors based on the multi-layer transfer-matrix method is developed especially for the calculation of axially slitted solid rotors equipped with wellconducting end rings. The calculation results are verified by using the finite element analysis and laboratory measurements. The prototype motors of 250 – 300 kW and 140 Hz were tested to verify the results. Utilization factor data are given for several other prototypes the largest of which delivers 1000 kW at 12000 min-1.
Resumo:
This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspect
Resumo:
This master’s thesis is focused on the active magnetic bearings control, specifically the robust control. As carrying out of such kind of control used mixed H2/Hinf controller. So the goal of this work is to design it using Robust Control Toolbox™ in MATLAB and compare it performance and robustness with Hinf robust controller characteristics. But only one degree-of-freedom controller considered.
Resumo:
The development of software tools begun as the first computers were built. The current generation of development environments offers a common interface to access multiple software tools and often also provide a possibility to build custom tools as extensions to the existing development environment. Eclipse is an open source development environment that offers good starting point for developing custom extensions. This thesis presents a software tool to aid the development of context-aware applications on Multi-User Publishing Environment (MUPE) platform. The tool is implemented as an Eclipse plug-in. The tool allows developer to include external server side contexts to their MUPE applications. The tool allows additional context sources to be added through the Eclipse's extension point mechanism. The thesis describes how the tool was designed and implemented. The implementation consists of tool core component part and an additional context source extension part. Tool core component is responsible for the actual context addition and also provides the needed user interface elements to the Eclipse workbench. Context source component provides the needed context source related information to the core component. As part of the work an update site feature was also implemented for distributing the tool through Eclipse update mechanism.
Resumo:
The age-old adage goes that nothing in this world lasts but change, and this generation has indeed seen changes that are unprecedented. Business managers do not have the luxury of going with the flow: they have to plan ahead, to think strategies that will meet the changing conditions, however stormy the weather seems to be. This demand raises the question of whether there is something a manager or planner can do to circumvent the eye of the storm in the future? Intuitively, one can either run on the risk of something happening without preparing, or one can try to prepare oneself. Preparing by planning for each eventuality and contingency would be impractical and prohibitively expensive, so one needs to develop foreknowledge, or foresight past the horizon of the present and the immediate future. The research mission in this study is to support strategic technology management by designing an effective and efficient scenario method to induce foresight to practicing managers. The design science framework guides this study in developing and evaluating the IDEAS method. The IDEAS method is an electronically mediated scenario method that is specifically designed to be an effective and accessible. The design is based on the state-of-the-art in scenario planning, and the product is a technology-based artifact to solve the foresight problem. This study demonstrates the utility, quality and efficacy of the artifact through a multi-method empirical evaluation study, first by experimental testing and secondly through two case studies. The construction of the artifact is rigorously documented as justification knowledge as well as the principles of form and function on the general level, and later through the description and evaluation of instantiations. This design contributes both to practice and foundation of the design. The IDEAS method contributes to the state-of-the-art in scenario planning by offering a light-weight and intuitive scenario method for resource constrained applications. Additionally, the study contributes to the foundations and methods of design by forging a clear design science framework which is followed rigorously. To summarize, the IDEAS method is offered for strategic technology management, with a confident belief that it will enable gaining foresight and aid the users to choose trajectories past the gales of creative destruction and off to a brighter future.
Resumo:
Commercially available haptic interfaces are usable for many purposes. However, as generic devices they are not the most suitable for the control of heavy duty mobile working machines like mining machines, container handling equipment and excavators. Alternative mechanical constructions for a haptic controller are presented and analysed. A virtual reality environment (VRE) was built to test the proposed haptic controller mechanisms. Verification of an electric motor emulating a hydraulic pump in the electro-hydraulic system of a mobile working machine is carried out. A real-time simulator using multi-body-dynamics based software with hardware-in-loop (HIL) setup was used for the tests. Recommendations for further development of a haptic controller and emulator electric motor are given.
Resumo:
Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.
Resumo:
This study combines several projects related to the flows in vessels with complex shapes representing different chemical apparata. Three major cases were studied. The first one is a two-phase plate reactor with a complex structure of intersecting micro channels engraved on one plate which is covered by another plain plate. The second case is a tubular microreactor, consisting of two subcases. The first subcase is a multi-channel two-component commercial micromixer (slit interdigital) used to mix two liquid reagents before they enter the reactor. The second subcase is a micro-tube, where the distribution of the heat generated by the reaction was studied. The third case is a conventionally packed column. However, flow, reactions or mass transfer were not modeled. Instead, the research focused on how to describe mathematically the realistic geometry of the column packing, which is rather random and can not be created using conventional computeraided design or engineering (CAD/CAE) methods. Several modeling approaches were used to describe the performance of the processes in the considered vessels. Computational fluid dynamics (CFD) was used to describe the details of the flow in the plate microreactor and micromixer. A space-averaged mass transfer model based on Fick’s law was used to describe the exchange of the species through the gas-liquid interface in the microreactor. This model utilized data, namely the values of the interfacial area, obtained by the corresponding CFD model. A common heat transfer model was used to find the heat distribution in the micro-tube. To generate the column packing, an additional multibody dynamic model was implemented. Auxiliary simulation was carried out to determine the position and orientation of every packing element in the column. This data was then exported into a CAD system to generate desirable geometry, which could further be used for CFD simulations. The results demonstrated that the CFD model of the microreactor could predict the flow pattern well enough and agreed with experiments. The mass transfer model allowed to estimate the mass transfer coefficient. Modeling for the second case showed that the flow in the micromixer and the heat transfer in the tube could be excluded from the larger model which describes the chemical kinetics in the reactor. Results of the third case demonstrated that the auxiliary simulation could successfully generate complex random packing not only for the column but also for other similar cases.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Preparative liquid chromatography is one of the most selective separation techniques in the fine chemical, pharmaceutical, and food industries. Several process concepts have been developed and applied for improving the performance of classical batch chromatography. The most powerful approaches include various single-column recycling schemes, counter-current and cross-current multi-column setups, and hybrid processes where chromatography is coupled with other unit operations such as crystallization, chemical reactor, and/or solvent removal unit. To fully utilize the potential of stand-alone and integrated chromatographic processes, efficient methods for selecting the best process alternative as well as optimal operating conditions are needed. In this thesis, a unified method is developed for analysis and design of the following singlecolumn fixed bed processes and corresponding cross-current schemes: (1) batch chromatography, (2) batch chromatography with an integrated solvent removal unit, (3) mixed-recycle steady state recycling chromatography (SSR), and (4) mixed-recycle steady state recycling chromatography with solvent removal from fresh feed, recycle fraction, or column feed (SSR–SR). The method is based on the equilibrium theory of chromatography with an assumption of negligible mass transfer resistance and axial dispersion. The design criteria are given in general, dimensionless form that is formally analogous to that applied widely in the so called triangle theory of counter-current multi-column chromatography. Analytical design equations are derived for binary systems that follow competitive Langmuir adsorption isotherm model. For this purpose, the existing analytic solution of the ideal model of chromatography for binary Langmuir mixtures is completed by deriving missing explicit equations for the height and location of the pure first component shock in the case of a small feed pulse. It is thus shown that the entire chromatographic cycle at the column outlet can be expressed in closed-form. The developed design method allows predicting the feasible range of operating parameters that lead to desired product purities. It can be applied for the calculation of first estimates of optimal operating conditions, the analysis of process robustness, and the early-stage evaluation of different process alternatives. The design method is utilized to analyse the possibility to enhance the performance of conventional SSR chromatography by integrating it with a solvent removal unit. It is shown that the amount of fresh feed processed during a chromatographic cycle and thus the productivity of SSR process can be improved by removing solvent. The maximum solvent removal capacity depends on the location of the solvent removal unit and the physical solvent removal constraints, such as solubility, viscosity, and/or osmotic pressure limits. Usually, the most flexible option is to remove solvent from the column feed. Applicability of the equilibrium design for real, non-ideal separation problems is evaluated by means of numerical simulations. Due to assumption of infinite column efficiency, the developed design method is most applicable for high performance systems where thermodynamic effects are predominant, while significant deviations are observed under highly non-ideal conditions. The findings based on the equilibrium theory are applied to develop a shortcut approach for the design of chromatographic separation processes under strongly non-ideal conditions with significant dispersive effects. The method is based on a simple procedure applied to a single conventional chromatogram. Applicability of the approach for the design of batch and counter-current simulated moving bed processes is evaluated with case studies. It is shown that the shortcut approach works the better the higher the column efficiency and the lower the purity constraints are.
Resumo:
This thesis reports investigations on applying the Service Oriented Architecture (SOA) approach in the engineering of multi-platform and multi-devices user interfaces. This study has three goals: (1) analyze the present frameworks for developing multi-platform and multi-devices applications, (2) extend the principles of SOA for implementing a multi-platform and multi-devices architectural framework (SOA-MDUI), (3) applying and validating the proposed framework in the context of a specific application. One of the problems addressed in this ongoing research is the large amount of combinations for possible implementations of applications on different types of devices. Usually it is necessary to take into account the operating system (OS), user interface (UI) including the appearance, programming language (PL) and architectural style (AS). Our proposed approach extended the principles of SOA using patterns-oriented design and model-driven engineering approaches. Synthesizing the present work done in these domains, this research built and tested an engineering framework linking Model-driven Architecture (MDA) and SOA approaches to developing of UI. This study advances general understanding of engineering, deploying and managing multi-platform and multi-devices user interfaces as a service.
Resumo:
This dissertation centres on the themes of knowledge creation, interdisciplinarity and knowledge work. My research approaches interdisciplinary knowledge creation (IKC) as practical situated activity. I argue that by approaching IKC from the practice-based perspective makes it possible to “deconstruct” how knowledge creation actually happens, and demystify its strong intellectual, mentalistic and expertise-based connotations. I have rendered the work of the observed knowledge workers into something ordinary, accessible and routinized. Consequently this has made it possible to grasp the pragmatic challenges as well the concrete drivers of such activity. Thus the effective way of organizing such activities becomes a question of organizing and leading effective everyday practices. To achieve that end, I have conducted ethnographic research of one explicitly interdisciplinary space within higher education, Aalto Design Factory in Helsinki, Finland, where I observed how students from different disciplines collaborated in new product development projects. I argue that IKC is a multi-dimensional construct that intertwines a particular way of doing; a way of experiencing; a way of embodied being; and a way of reflecting on the very doing itself. This places emphasis not only the practices themselves, but also on the way the individual experiences the practices, as this directly affects how the individual practices. My findings suggest that in order to effectively organize and execute knowledge creation activities organizations need to better accept and manage the emergent diversity and complexity inherent in such activities. In order to accomplish this, I highlight the importance of understanding and using a variety of (material) objects, the centrality of mundane everyday practices, the acceptance of contradictions and negotiations well as the role of management that is involved and engaged. To succeed in interdisciplinary knowledge creation is to lead not only by example, but also by being very much present in the very everyday practices that make it happen.
Resumo:
SD card (Secure Digital Memory Card) is widely used in portable storage medium. Currently, latest researches on SD card, are mainly SD card controller based on FPGA (Field Programmable Gate Array). Most of them are relying on API interface (Application Programming Interface), AHB bus (Advanced High performance Bus), etc. They are dedicated to the realization of ultra high speed communication between SD card and upper systems. Studies about SD card controller, really play a vital role in the field of high speed cameras and other sub-areas of expertise. This design of FPGA-based file systems and SD2.0 IP (Intellectual Property core) does not only exhibit a nice transmission rate, but also achieve the systematic management of files, while retaining a strong portability and practicality. The file system design and implementation on a SD card covers the main three IP innovation points. First, the combination and integration of file system and SD card controller, makes the overall system highly integrated and practical. The popular SD2.0 protocol is implemented for communication channels. Pure digital logic design based on VHDL (Very-High-Speed Integrated Circuit Hardware Description Language), integrates the SD card controller in hardware layer and the FAT32 file system for the entire system. Secondly, the document management system mechanism makes document processing more convenient and easy. Especially for small files in batch processing, it can ease the pressure of upper system to frequently access and process them, thereby enhancing the overall efficiency of systems. Finally, digital design ensures the superior performance. For transmission security, CRC (Cyclic Redundancy Check) algorithm is for data transmission protection. Design of each module is platform-independent of macro cells, and keeps a better portability. Custom integrated instructions and interfaces may facilitate easily to use. Finally, the actual test went through multi-platform method, Xilinx and Altera FPGA developing platforms. The timing simulation and debugging of each module was covered. Finally, Test results show that the designed FPGA-based file system IP on SD card can support SD card, TF card and Micro SD with 2.0 protocols, and the successful implementation of systematic management for stored files, and supports SD bus mode. Data read and write rates in Kingston class10 card is approximately 24.27MB/s and 16.94MB/s.
Resumo:
The wide adaptation of Internet Protocol (IP) as de facto protocol for most communication networks has established a need for developing IP capable data link layer protocol solutions for Machine to machine (M2M) and Internet of Things (IoT) networks. However, the wireless networks used for M2M and IoT applications usually lack the resources commonly associated with modern wireless communication networks. The existing IP capable data link layer solutions for wireless IoT networks provide the necessary overhead minimising and frame optimising features, but are often built to be compatible only with IPv6 and specific radio platforms. The objective of this thesis is to design IPv4 compatible data link layer for Netcontrol Oy's narrow band half-duplex packet data radio system. Based on extensive literature research, system modelling and solution concept testing, this thesis proposes the usage of tunslip protocol as the basis for the system data link layer protocol development. In addition to the functionality of tunslip, this thesis discusses the additional network, routing, compression, security and collision avoidance changes required to be made to the radio platform in order for it to be IP compatible while still being able to maintain the point-to-multipoint and multi-hop network characteristics. The data link layer design consists of the radio application, dynamic Maximum Transmission Unit (MTU) optimisation daemon and the tunslip interface. The proposed design uses tunslip for creating an IP capable data link protocol interface. The radio application receives data from tunslip and compresses the packets and uses the IP addressing information for radio network addressing and routing before forwarding the message to radio network. The dynamic MTU size optimisation daemon controls the tunslip interface maximum MTU size according to the link quality assessment calculated from the radio network diagnostic data received from the radio application. For determining the usability of tunslip as the basis for data link layer protocol, testing of the tunslip interface is conducted with both IEEE 802.15.4 radios and packet data radios. The test cases measure the radio network usability for User Datagram Protocol (UDP) based applications without applying any header or content compression. The test results for the packet data radios reveal that the typical success rate for packet reception through a single-hop link is above 99% with a round-trip-delay of 0.315s for 63B packets.