18 resultados para mean retention time
Resumo:
When modeling machines in their natural working environment collisions become a very important feature in terms of simulation accuracy. By expanding the simulation to include the operation environment, the need for a general collision model that is able to handle a wide variety of cases has become central in the development of simulation environments. With the addition of the operating environment the challenges for the collision modeling method also change. More simultaneous contacts with more objects occur in more complicated situations. This means that the real-time requirement becomes more difficult to meet. Common problems in current collision modeling methods include for example dependency on the geometry shape or mesh density, calculation need increasing exponentially in respect to the number of contacts, the lack of a proper friction model and failures due to certain configurations like closed kinematic loops. All these problems mean that the current modeling methods will fail in certain situations. A method that would not fail in any situation is not very realistic but improvements can be made over the current methods.
Resumo:
The goal of this thesis is studying knowledge retention mechanisms used in cases of single experts’ leaving in the case company, analyzing the reason for the mechanisms choice and successfulness of knowledge retention process depending of that choice. The theoretical part discusses the origins of knowledge retention processes in the theoretical studies, the existing knowledge retention mechanisms and practical issues of their implementation. The empirical part of the study is designed as employees’ interview with later discussion of the findings. The empirical findings indicate the following reasons for knowledge retention mechanisms choice: type of knowledge retained, specialty of leaving experts and time and distance issues of a particular case. The following factors influenced the success of a retention process: choice of knowledge retention mechanisms, usage of combination of mechanisms and creation of knowledge retention plans. The results might be useful for those interested in factors influencing knowledge retention processes in cases of experts’ departure.
Stochastic particle models: mean reversion and burgers dynamics. An application to commodity markets
Resumo:
The aim of this study is to propose a stochastic model for commodity markets linked with the Burgers equation from fluid dynamics. We construct a stochastic particles method for commodity markets, in which particles represent market participants. A discontinuity in the model is included through an interacting kernel equal to the Heaviside function and its link with the Burgers equation is given. The Burgers equation and the connection of this model with stochastic differential equations are also studied. Further, based on the law of large numbers, we prove the convergence, for large N, of a system of stochastic differential equations describing the evolution of the prices of N traders to a deterministic partial differential equation of Burgers type. Numerical experiments highlight the success of the new proposal in modeling some commodity markets, and this is confirmed by the ability of the model to reproduce price spikes when their effects occur in a sufficiently long period of time.