34 resultados para label


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Particulate nanostructures are increasingly used for analytical purposes. Such particles are often generated by chemical synthesis from non-renewable raw materials. Generation of uniform nanoscale particles is challenging and particle surfaces must be modified to make the particles biocompatible and water-soluble. Usually nanoparticles are functionalized with binding molecules (e.g., antibodies or their fragments) and a label substance (if needed). Overall, producing nanoparticles for use in bioaffinity assays is a multistep process requiring several manufacturing and purification steps. This study describes a biological method of generating functionalized protein-based nanoparticles with specific binding activity on the particle surface and label activity inside the particles. Traditional chemical bioconjugation of the particle and specific binding molecules is replaced with genetic fusion of the binding molecule gene and particle backbone gene. The entity of the particle shell and binding moieties are synthesized from generic raw materials by bacteria, and fermentation is combined with a simple purification method based on inclusion bodies. The label activity is introduced during the purification. The process results in particles that are ready-to-use as reagents in bioaffinity. Apoferritin was used as particle body and the system was demonstrated using three different binding moieties: a small protein, a peptide and a single chain Fv antibody fragment that represents a complex protein including disulfide bridge.If needed, Eu3+ was used as label substance. The results showed that production system resulted in pure protein preparations, and the particles were of homogeneous size when visualized with transmission electron microscopy. Passively introduced label was stably associated with the particles, and binding molecules genetically fused to the particle specifically bound target molecules. Functionality of the particles in bioaffinity assays were successfully demonstrated with two types of assays; as labels and in particle-enhanced agglutination assay. This biological production procedure features many advantages that make the process especially suited for applications that have frequent and recurring requirements for homogeneous functional particles. The production process of ready, functional and watersoluble particles follows principles of “green chemistry”, is upscalable, fast and cost-effective.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fluent health information flow is critical for clinical decision-making. However, a considerable part of this information is free-form text and inabilities to utilize it create risks to patient safety and cost-­effective hospital administration. Methods for automated processing of clinical text are emerging. The aim in this doctoral dissertation is to study machine learning and clinical text in order to support health information flow.First, by analyzing the content of authentic patient records, the aim is to specify clinical needs in order to guide the development of machine learning applications.The contributions are a model of the ideal information flow,a model of the problems and challenges in reality, and a road map for the technology development. Second, by developing applications for practical cases,the aim is to concretize ways to support health information flow. Altogether five machine learning applications for three practical cases are described: The first two applications are binary classification and regression related to the practical case of topic labeling and relevance ranking.The third and fourth application are supervised and unsupervised multi-class classification for the practical case of topic segmentation and labeling.These four applications are tested with Finnish intensive care patient records.The fifth application is multi-label classification for the practical task of diagnosis coding. It is tested with English radiology reports.The performance of all these applications is promising. Third, the aim is to study how the quality of machine learning applications can be reliably evaluated.The associations between performance evaluation measures and methods are addressed,and a new hold-out method is introduced.This method contributes not only to processing time but also to the evaluation diversity and quality. The main conclusion is that developing machine learning applications for text requires interdisciplinary, international collaboration. Practical cases are very different, and hence the development must begin from genuine user needs and domain expertise. The technological expertise must cover linguistics,machine learning, and information systems. Finally, the methods must be evaluated both statistically and through authentic user-feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing incidence of type 1 diabetes has led researchers on a quest to find the reason behind this phenomenon. The rate of increase is too great to be caused simply by changes in the genetic component, and many environmental factors are under investigation for their possible contribution. These studies require, however, the participation of those individuals most likely to develop the disease, and the approach chosen by many is to screen vast populations to find persons with increased genetic risk factors. The participating individuals are then followed for signs of disease development, and their exposure to suspected environmental factors is studied. The main purpose of this study was to find a suitable tool for easy and inexpensive screening of certain genetic risk markers for type 1 diabetes. The method should be applicable to using whole blood dried on sample collection cards as sample material, since the shipping and storage of samples in this format is preferred. However, the screening of vast sample libraries of extracted genomic DNA should also be possible, if such a need should arise, for example, when studying the effect of newly discovered genetic risk markers. The method developed in this study is based on homogeneous assay chemistry and an asymmetrical polymerase chain reaction (PCR). The generated singlestranded PCR product is probed by lanthanide-labelled, LNA (locked nucleic acid)-spiked, short oligonucleotides with exact complementary sequences. In the case of a perfect match, the probe is hybridised to the product. However, if even a single nucleotide difference occurs, the probe is bound instead of the PCR product to a complementary quencher-oligonucleotide labelled with a dabcyl-moiety, causing the signal of the lanthanide label to be quenched. The method was applied to the screening of the well-known type 1 diabetes risk alleles of the HLA-DQB1 gene. The method was shown to be suitable as an initial screening step including thousands of samples in the scheme used in the TEDDY (The Environmental Determinants of Diabetes in the Young) study to identify those individuals at increased genetic risk. The method was further developed into dry-reagent form to allow an even simpler approach to screening. The reagents needed in the assay were in dry format in the reaction vessel, and performing the assay required only the addition of the sample and, if necessary, water to rehydrate the reagents. This allows the assay to be successfully executed even by a person with minimal laboratory experience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä diplomityö on selostus tarraetikettejä valmistavalle yritykselle talon sisäisesti toteutetusta toiminnanohjausjärjestelmän kehitysprojektista. Projektissa luotiin ohjelmisto tukemaan yrityksen keskeisimpiä toimintoja, kuten myyntiä, asiakkuuksien hallintaa, tuotantoa, materiaalihallintoa sekä johdon päätöksentekoa. Työssä tarkastellaan ensin yrityksen menettelytapoja ja valmistusmenetelmiä, ja kerätään niistä konkreettisia vaatimuksia järjestelmälle. Nämä yhdistetään muista tutkimuksista kerättyihin toiminnanohjausjärjestelmien mahdollisuuksiin ja riskeihin sekä laaditaan näistä projektin tavoitteet. Seuraavaksi käydään läpi toteutuksessa tehdyt suunnitteluratkaisut ja niihin johtaneet seikat. Toteutetut toiminnot ja ominaisuudet esitellään perusteluineen. Lopuksi analysoidaan projektin onnistumista peilaten sitä muihin aiheeseen liittyviin tutkimustuloksiin. Käyttöönottoprosessin vaiheet ja siinä esiintyneet ongelmat käydään myös lyhyesti läpi.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Olfactory packaging is an emerging technology which uses the aromatic capsules to release various scents. Normally, manufacturers add these aromatic capsules in the printing ink, the label or packaging material itself. When the aromatic capsules meet suitable release triggers, the scents will be released. The common release triggers are external forces, temperature changes, humidity changes and so on. The aim for this Masters of Science Thesis is to understand the aroma printing technology from literature and make market research for this kind of technology. The main target is to collect the current technology principle of aroma packaging and figure out how they are implemented on products with those. In addition, an investigation is made about consumers' attitudes from Chinese and Finnish market through the questionnaire, and the market potential is analyzed as well. The key points researched in this work are: the general attitudes on aroma printing technology, market potential and economic possibilities. This thesis specifies the main technologies used in aroma printing, the solutions of products with aroma packaging and the original results of the questionnaires. It also includes analysis of the acceptance of Chinese and Finnish consumers, what are their opinions of the aroma printing technology and the products packed by aroma printing technology. In addition, various factors which impact the market is discussed in the thesis. At last, some comparisons are made from the point of views of similarities and differences between Chinese and Finnish market.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the study is to expand networking between a packaging material manufacturer and retailers in order to develop products which appeal to brand owners and their customers. The in-built targets are to understand the retailer’s role in the value chain, clarify who makes packaging decision of private label products, and canvass the importance of sustainability. The present value chain of the packaging material manufacturer is reviewed first. It is assumed that sustainability could be a common interest, and The Consumer Goods Forum’s “A Global Language for Packaging and Sustainability” report is shortly discussed. The presentation of the most common packaging materials is based on a guide called “Packaging in the Sustainability Agenda: A Guide for Corporate Decision Makers”. The terms manufacturer’s brand and private label are defined. A retail value chain with emphasis on the role of customers as partners is introduced. The study area is the Nordic countries, and the information about Nordic retailers was provided first by desk research. The interviews were made in Finland, Sweden, Norway and Denmark. The study method is qualitative: the intention was to get initial insights, ideas and understandings. The results are compiled under the headings: sustainability, private labels, cooperation and packaging development. Also the reasons for good profitability of private labels are explained. Sustainability or responsibility is a key driver for innovation in the retail sector. Private labels have become brands. The ways of cooperation between a packaging material manufacturer and a retailer could be education and training. Packaging development is of great interest to retailers and they are willing to contribute.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn lähtökohtana ovat veden lämmittimiä koskeva ekosuunnittelulainsäädäntö ja sen vaatiman testausjärjestelmän laatiminen. Työn tavoitteena on arvioida ekosuunnittelulainsäädännön vaikutusta varaajan toimintaan osana rakennusten energianhallintaa. Työssä laaditaan käyttövesivaraajalle tuoteryhmäkohtaisen ekosuunnittelulainsäädännön mukainen mittausjärjestelmä energiatehokkuuden, lämpimän veden saannon, vuosittaisen sähkönkulutuksen sekä energiamerkinnän määrittämiseksi. Lisäksi tarkastellaan ekosuunnittelulainsäädännön tarkoituksenmukaisuutta, selvitetään varaajan toimintaperiaatteet sekä keinoja käyttöveden tarvitseman energian vähentämiseksi. Testattu käyttövesivaraaja täyttää ekosuunnitteluvaatimukset. Lämmitysenergian vähentäminen käyttövesivaraajan toimintaa tehostamalla on kuitenkin vaikeaa. Hybridijärjestelmien hyödyntäminen sähkölämmityksen ohella muita energianlähteitä ja esim. käyttöveden lämmöntalteenottoa käyttäen on toimivin keino vähentää käyttöveden energiankulutusta sekä parantaa varaajan energiatehokkuutta. Lämpimän käyttöveden energiankulutuksen osuus rakennuksen energiankulutuksesta kasvaa lainsäädännön pakottamana rakennusten kokonaisenergiankäytön vähentyessä. Ekosuunnittelulainsäädännön suora merkitys rakennusten energianhallintaan on Suomessa vähäistä nykyisen energiatehokkuustason ollessa suhteellisen korkea, jolloin käyttöveden tarvitseman energian vähentämiskeinoina on hyödynnettävä vaihtoehtoisia ratkaisuja.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Information gained from the human genome project and improvements in compound synthesizing have increased the number of both therapeutic targets and potential lead compounds. This has evolved a need for better screening techniques to have a capacity to screen number of compound libraries against increasing amount of targets. Radioactivity based assays have been traditionally used in drug screening but the fluorescence based assays have become more popular in high throughput screening (HTS) as they avoid safety and waste problems confronted with radioactivity. In comparison to conventional fluorescence more sensitive detection is obtained with time-resolved luminescence which has increased the popularity of time-resolved fluorescence resonance energy transfer (TR-FRET) based assays. To simplify the current TR-FRET based assay concept the luminometric homogeneous single-label utilizing assay technique, Quenching Resonance Energy Transfer (QRET), was developed. The technique utilizes soluble quencher to quench non-specifically the signal of unbound fraction of lanthanide labeled ligand. One labeling procedure and fewer manipulation steps in the assay concept are saving resources. The QRET technique is suitable for both biochemical and cell-based assays as indicated in four studies:1) ligand screening study of β2 -adrenergic receptor (cell-based), 2) activation study of Gs-/Gi-protein coupled receptors by measuring intracellular concentration of cyclic adenosine monophosphate (cell-based), 3) activation study of G-protein coupled receptors by observing the binding of guanosine-5’-triphosphate (cell membranes), and 4) activation study of small GTP binding protein Ras (biochemical). Signal-to-background ratios were between 2.4 to 10 and coefficient of variation varied from 0.5 to 17% indicating their suitability to HTS use.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Binary probes are oligonucleotide probe pairs that hybridize adjacently to a complementary target nucleic acid. In order to detect this hybridization, the two probes can be modified with, for example, fluorescent molecules, chemically reactive groups or nucleic acid enzymes. The benefit of this kind of binary probe based approach is that the hybridization elicits a detectable signal which is distinguishable from background noise even though unbound probes are not removed by washing before measurement. In addition, the requirement of two simultaneous binding events increases specificity. Similarly to binary oligonucleotide probes, also certain enzymes and fluorescent proteins can be divided into two parts and used in separation-free assays. Split enzyme and fluorescent protein reporters have practical applications among others as tools to investigate protein-protein interactions within living cells. In this study, a novel label technology, switchable lanthanide luminescence, was introduced and used successfully in model assays for nucleic acid and protein detection. This label technology is based on a luminescent lanthanide chelate divided into two inherently non-luminescent moieties, an ion carrier chelate and a light harvesting antenna ligand. These form a highly luminescent complex when brought into close proximity; i.e., the label moieties switch from a dark state to a luminescent state. This kind of mixed lanthanide complex has the same beneficial photophysical properties as the more typical lanthanide chelates and cryptates - sharp emission peaks, long emission lifetime enabling time-resolved measurement, and large Stokes’ shift, which minimize the background signal. Furthermore, the switchable lanthanide luminescence technique enables a homogeneous assay set-up. Here, switchable lanthanide luminescence label technology was first applied to sensitive, homogeneous, single-target nucleic acid and protein assays with picomolar detection limits and high signal to background ratios. Thereafter, a homogeneous four-plex nucleic acid array-based assay was developed. Finally, the label technology was shown to be effective in discrimination of single nucleotide mismatched targets from fully matched targets and the luminescent complex formation was analyzed more thoroughly. In conclusion, this study demonstrates that the switchable lanthanide luminescencebased label technology can be used in various homogeneous bioanalytical assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työn tavoitteena oli arvioida tuotteen ympäristöjalanjälki –menetelmän (PEF) käytettävyyttä ympäristöviestintään. PEF-metodologiaa vertailtiin muihin ympäristötehokkuuden laskenta- ja viestintätyökaluihin, jotta löydettäisiin PEF:n epäkohtia ja vaihtoehtoja menetelmäpäätösten toimivammaksi muuttamiseen. Työssä tehtiin myös haastattelututkimus yhden tuoteryhmäsääntöjen (PEFCR) laadintaprojektin toimijoille, jotta löydettäisiin PEFCR:ien laadinnan epäkohtia. Työssä arviointiin myös testattavaksi ehdotetun PEF-merkinnän käytettävyyttä ympäristöviestintään. Työssä todettiin, että PEF-metodologiassa on epäkohtia, joiden todellinen merkitys ja vaikutus selviävät vasta pilottivaiheen jälkeen. PEF:ssä on annettu vähemmän vapauksia menetelmäpäätösten tekoon kuin nykyisissä menetelmissä, mutta se mahdollistaa paremmat lähtökohdat halvemmille ja vertailukelpoisemmille selvityksille. Ympäristöviestinnän kannalta erityisesti PEFCR:ien toimivaksi saaminen on hyvin tärkeää, jotta työkalulla on edellytykset käyttöönotolle. Lähtökohdat PEFCR:ien toimivaksi saamiseksi ovat kunnossa, mutta projektin tiukka aikataulu yhdessä PEF:n ja PEFCR:ien kyseenalaisten menetelmäpäätösten kanssa saattavat aiheuttaa ongelmia. Menetelmän käyttöönoton onnistumiseen vaikuttavat myös työkalusta riippumattomat asiat, kuten nykyiset ympäristömerkintäjärjestelmät sekä kuluttajakäytöksen muuttamiseen ja yritysmaailman integrointiin PEF:n käyttäjiksi liittyvät haasteet.