28 resultados para island arc
Resumo:
Bodies, Borders, Crossings -ryhmänäyttely, Covernors Island rantakasarmi, kuraattorit Leena-Maija Rossi ja Kari Soinio, tuottaja Frame ja Suomen New Yorkin kulttuuri-instituutti. Esillä videoteos Miss Kong.
Resumo:
Production and generation of electrical power is evolving to more environmental friendly technologies and schemes. Pushed by the increasing cost of fossil fuels, the operational costs of producing electrical power with fossil fuels and the effect in the environment, like pollution and global warming, renewable energy sources gain con-stant impulse into the global energy economy. In consequence, the introduction of distributed energy sources has brought a new complexity to the electrical networks. In the new concept of smart grids and decen-tralized power generation; control, protection and measurement are also distributed and requiring, among other things, a new scheme of communication to operate with each other in balance and improve performance. In this research, an analysis of different communication technologies (power line communication, Ethernet over unshielded twisted pair (UTP), optic fiber, Wi-Fi, Wi-MAX, and Long Term Evolution) and their respective characteristics will be carried out. With the objective of pointing out strengths and weaknesses from different points of view (technical, economical, deployment, etc.) to establish a richer context on which a decision for communication approach can be done depending on the specific application scenario of a new smart grid deployment. As a result, a description of possible optimal deployment solutions for communication will be shown considering different options for technologies, and a mention of different important considerations to be taken into account will be made for some of the possible network implementation scenarios.
Resumo:
Tropical forests are sources of many ecosystem services, but these forests are vanishing rapidly. The situation is severe in Sub-Saharan Africa and especially in Tanzania. The causes of change are multidimensional and strongly interdependent, and only understanding them comprehensively helps to change the ongoing unsustainable trends of forest decline. Ongoing forest changes, their spatiality and connection to humans and environment can be studied with the methods of Land Change Science. The knowledge produced with these methods helps to make arguments about the actors, actions and causes that are behind the forest decline. In this study of Unguja Island in Zanzibar the focus is in the current forest cover and its changes between 1996 and 2009. The cover and changes are measured with often used remote sensing methods of automated land cover classification and post-classification comparison from medium resolution satellite images. Kernel Density Estimation is used to determine the clusters of change, sub-area –analysis provides information about the differences between regions, while distance and regression analyses connect changes to environmental factors. These analyses do not only explain the happened changes, but also allow building quantitative and spatial future scenarios. Similar study has not been made for Unguja and therefore it provides new information, which is beneficial for the whole society. The results show that 572 km2 of Unguja is still forested, but 0,82–1,19% of these forests are disappearing annually. Besides deforestation also vertical degradation and spatial changes are significant problems. Deforestation is most severe in the communal indigenous forests, but also agroforests are decreasing. Spatially deforestation concentrates to the areas close to the coastline, population and Zanzibar Town. Biophysical factors on the other hand do not seem to influence the ongoing deforestation process. If the current trend continues there should be approximately 485 km2 of forests remaining in 2025. Solutions to these deforestation problems should be looked from sustainable land use management, surveying and protection of the forests in risk areas and spatially targeted self-sustainable tree planting schemes.
Resumo:
Nimeketiedot nimiönkehyksissä
Resumo:
The term urban heat island (UHI) refers to the common situation in which the city is warmer than its rural surroundings. In this dissertation, the local climate, and especially the UHI, of the coastal city of Turku (182,000 inh.), SW Finland, was studied in different spatial and temporal scales. The crucial aim was to sort out the urban, topographical and water body impact on temperatures at different seasons and times of the day. In addition, the impact of weather on spatiotemporal temperature differences was studied. The relative importance of environmental factors was estimated with different modelling approaches and a large number of explanatory variables with various spatial scales. The city centre is the warmest place in the Turku area. Temperature excess relative to the coldest sites, i.e. rural areas about 10 kilometers to the NE from the centre, is on average 2 °C. Occasionally, the UHI intensity can be even 10 °C. The UHI does not prevail continuously in the Turku area, but occasionally the city centre can be colder than its surroundings. Then the term urban cool island or urban cold island (UCI) is used. The UCI is most common in daytime in spring and in summer, whereas during winter the UHI prevails throughout the day. On average, the spatial temperature differences are largest in summer, whereas the single extreme values are often observed in winter. The seasonally varying sea temperature causes the shift of relatively warm areas towards the coast in autumn and inland in spring. In the long term, urban land use was concluded to be the most important factor causing spatial temperature differences in the Turku area. The impact was mainly a warming one. The impact of water bodies was emphasised in spring and autumn, when the water temperature was relatively cold and warm, respectively. The impact of topography was on average the weakest, and was seen mainly in proneness of relatively low-lying places for cold air drainage during night-time. During inversions, however, the impact of topography was emphasised, occasionally outperforming those of urban land use and water bodies.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
This thesis is part of the Arctic Materials Technologies Development –project. The research of the thesis was done in cooperation with Arctech Helsinki Shipyard, Lappeenranta University of Technology and Kemppi Oy. Focus of the thesis was to study narrow gap flux-cored arc welding of two high strength steels with three different groove angles of 20°, 10° and 5°. Welding of the 25 mm thick E500 TMCP and 10 mm thick EH36 steels was mechanized and Kemppi WisePenetration and WiseFusion processes were tested with E500 TMCP steel. EH36 steel test pieces were welded without Wise processes. Shielding gases chosen were carbon dioxide and a mixture of argon and carbon dioxide. Welds were tested with non-destructive and destructive testing methods. Radiographic, visual, magnetic particle and liquid penetrant testing proved that welds were free from imperfections. After non-destructive testing, welds were tested with various destructive testing methods. Impact strength, bending, tensile strength and hardess tests proved that mechanized welding and Wise processes produced quality welds with narrower gap. More inconsistent results were achieved with test pieces welded without Wise processes. Impact test results of E500 TMCP exceeded the 50 J limit on weld, set by Russian Maritime Register of Shipping. EH36 impact test results were much closer to the limiting values of 34 J on weld and 47 on HAZ. Hardness values of all test specimens were below the limiting values. Bend testing and tensile testing results fulfilled the the Register requirements. No cracking or failing occurred on bend test specimens and tensile test results exceeded the Register limits of 610 MPa for E500 TMCP and 490 MPa for EH36.
Resumo:
The main objective of the study was to define the methodology for assessing the limits for application island grids instead of interconnecting with existing grid infrastructure. The model for simulation of grid extension distance and levelised cost of electricity has been developed and validated by the case study in Finland. Thereafter, sensitivities of the application limits were examined with the respect to operational environment, load conditions, supply security and geographical location. Finally, recommendations for the small-scale rural electrification projects in the market economy environment have been proposed.
Resumo:
Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.
Resumo:
Today, renewable energy technologies and modern power electronics have made it feasible to implement low voltage direct current (LVDC) microgrids (MGs) ca-pable to island operation. Such LVDC networks are particularly useful in remote areas. However, there are still pending issues in island operated LVDC MGs like electrical safety and controlled operation, which should be addressed before wide-scale implementation. This thesis is focused on the overall protection of an island operated LVDC network concept, including protection against electrical shocks, mains equipment protection and protection of photovoltaic (PV) power sources and battery energy storage systems (BESSs). The topic is approached through ex-amination of the safety hazards and the appropriate methods to protect against them, comprising considerations for earthing system selection and realisation of the protection system.
Resumo:
The aim of this thesis is to find and analyze different methods which reduce fluid bed boilers’ auxiliary power consumption. The objective is to examine the effects and feasibility of these methods. The literature part explains how fluid bed boilers work and what are the main sources of auxiliary power consumption. Designs and operation of these equipment are presented. The literature part also discusses the basics of auxiliary power consumption reduction and introduces four low pressure drop constructions. The experimental part inspects six different methods. Effects of these methods on the auxiliary power consumption are calculated and their impacts on the operation of the boiler are modeled. Calculations show that reasonable changes can reduce fluid bed boiler’s auxiliary power consumption by 2,1-10,2 %. Biggest reductions come from lower air coefficients, smaller bed a-level pressures and lower primary/secondary air –ratios. Models showed no problems with the smaller bed a-level pressures. With the lower air coefficients and smaller primary/secondary air –ratios the models showed a significant increase in the carbon monoxide levels.