16 resultados para inland fishery


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transportation plays a major role in the gross domestic product of various nations. There are, however, many obstacles hindering the transportation sector. Cost-efficiency along with proper delivery times, high frequency and reliability are not a straightforward task. Furthermore, environmental friendliness has increased the importance of the whole transportation sector. This development will change roles inside the transportation sector. Even now, but especially in the future, decisions regarding the transportation sector will be partly based on emission levels and other externalities originating from transportation in addition to pure transportation costs. There are different factors, which could have an impact on the transportation sector. IMO’s sulphur regulation is estimated to increase the costs of short sea shipping in the Baltic Sea. Price development of energy could change the roles of different transport modes. Higher awareness of the environmental impacts originating from transportation could also have an impact on the price level of more polluting transport modes. According to earlier research, increased inland transportation, modal shift and slowsteaming can be possible results of these changes in the transportation sector. Possible changes in the transportation sector and ways to settle potential obstacles are studied in this dissertation. Furthermore, means to improve cost-efficiency and to decrease environmental impacts originating from transportation are researched. Hypothetical Finnish dry port network and Rail Baltica transport corridor are studied in this dissertation. Benefits and disadvantages are studied with different methodologies. These include gravitational models, which were optimized with linear integer programming, discrete-event and system dynamics simulation, an interview study and a case study. Geographical focus is on the Baltic Sea Region, but the results can be adapted to other geographical locations with discretion. Results indicate that the dry port concept has benefits, but optimization regarding the location and the amount of dry ports plays an important role. In addition, the utilization of dry ports for freight transportation should be carefully operated, since only a certain amount of total freight volume can be cost-efficiently transported through dry ports. If dry ports are created and located without proper planning, they could actually increase transportation costs and delivery times of the whole transportation system. With an optimized dry port network, transportation costs can be lowered in Finland with three to five dry ports. Environmental impacts can be lowered with up to nine dry ports. If more dry ports are added to the system, the benefits become very minor, i.e. payback time of investments becomes extremely long. Furthermore, dry port network could support major transport corridors such as Rail Baltica. Based on an analysis of statistics and interview study, there could be enough freight volume available for Rail Baltica, especially, if North-West Russia is part of the Northern end of the corridor. Transit traffic to and from Russia (especially through the Baltic States) plays a large role. It could be possible to increase transit traffic through Finland by connecting the potential Finnish dry port network and the studied transport corridor. Additionally, sulphur emission regulation is assumed to increase the attractiveness of Rail Baltica in the year 2015. Part of the transit traffic could be rerouted along Rail Baltica instead of the Baltic Sea, since the price level of sea transport could increase due to the sulphur regulation. Both, the hypothetical Finnish dry port network and Rail Baltica transport corridor could benefit each other. The dry port network could gain more market share from Russia, but also from Central Europe, which is the other end of Rail Baltica. In addition, further Eastern countries could also be connected to achieve higher potential freight volume by rail.