24 resultados para formal sociology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's networked systems are becoming increasingly complex and diverse. The current simulation and runtime verification techniques do not provide support for developing such systems efficiently; moreover, the reliability of the simulated/verified systems is not thoroughly ensured. To address these challenges, the use of formal techniques to reason about network system development is growing, while at the same time, the mathematical background necessary for using formal techniques is a barrier for network designers to efficiently employ them. Thus, these techniques are not vastly used for developing networked systems. The objective of this thesis is to propose formal approaches for the development of reliable networked systems, by taking efficiency into account. With respect to reliability, we propose the architectural development of correct-by-construction networked system models. With respect to efficiency, we propose reusable network architectures as well as network development. At the core of our development methodology, we employ the abstraction and refinement techniques for the development and analysis of networked systems. We evaluate our proposal by employing the proposed architectures to a pervasive class of dynamic networks, i.e., wireless sensor network architectures as well as to a pervasive class of static networks, i.e., network-on-chip architectures. The ultimate goal of our research is to put forward the idea of building libraries of pre-proved rules for the efficient modelling, development, and analysis of networked systems. We take into account both qualitative and quantitative analysis of networks via varied formal tool support, using a theorem prover the Rodin platform and a statistical model checker the SMC-Uppaal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines information security as a process (information securing) in terms of what it does, especially beyond its obvious role of protector. It investigates concepts related to ‘ontology of becoming’, and examines what it is that information securing produces. The research is theory driven and draws upon three fields: sociology (especially actor-network theory), philosophy (especially Gilles Deleuze and Félix Guattari’s concept of ‘machine’, ‘territory’ and ‘becoming’, and Michel Serres’s concept of ‘parasite’), and information systems science (the subject of information security). Social engineering (used here in the sense of breaking into systems through non-technical means) and software cracker groups (groups which remove copy protection systems from software) are analysed as examples of breaches of information security. Firstly, the study finds that information securing is always interruptive: every entity (regardless of whether or not it is malicious) that becomes connected to information security is interrupted. Furthermore, every entity changes, becomes different, as it makes a connection with information security (ontology of becoming). Moreover, information security organizes entities into different territories. However, the territories – the insides and outsides of information systems – are ontologically similar; the only difference is in the order of the territories, not in the ontological status of entities that inhabit the territories. In other words, malicious software is ontologically similar to benign software; they both are users in terms of a system. The difference is based on the order of the system and users: who uses the system and what the system is used for. Secondly, the research shows that information security is always external (in the terms of this study it is a ‘parasite’) to the information system that it protects. Information securing creates and maintains order while simultaneously disrupting the existing order of the system that it protects. For example, in terms of software itself, the implementation of a copy protection system is an entirely external addition. In fact, this parasitic addition makes software different. Thus, information security disrupts that which it is supposed to defend from disruption. Finally, it is asserted that, in its interruption, information security is a connector that creates passages; it connects users to systems while also creating its own threats. For example, copy protection systems invite crackers and information security policies entice social engineers to use and exploit information security techniques in a novel manner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resilience is the property of a system to remain trustworthy despite changes. Changes of a different nature, whether due to failures of system components or varying operational conditions, significantly increase the complexity of system development. Therefore, advanced development technologies are required to build robust and flexible system architectures capable of adapting to such changes. Moreover, powerful quantitative techniques are needed to assess the impact of these changes on various system characteristics. Architectural flexibility is achieved by embedding into the system design the mechanisms for identifying changes and reacting on them. Hence a resilient system should have both advanced monitoring and error detection capabilities to recognise changes as well as sophisticated reconfiguration mechanisms to adapt to them. The aim of such reconfiguration is to ensure that the system stays operational, i.e., remains capable of achieving its goals. Design, verification and assessment of the system reconfiguration mechanisms is a challenging and error prone engineering task. In this thesis, we propose and validate a formal framework for development and assessment of resilient systems. Such a framework provides us with the means to specify and verify complex component interactions, model their cooperative behaviour in achieving system goals, and analyse the chosen reconfiguration strategies. Due to the variety of properties to be analysed, such a framework should have an integrated nature. To ensure the system functional correctness, it should rely on formal modelling and verification, while, to assess the impact of changes on such properties as performance and reliability, it should be combined with quantitative analysis. To ensure scalability of the proposed framework, we choose Event-B as the basis for reasoning about functional correctness. Event-B is a statebased formal approach that promotes the correct-by-construction development paradigm and formal verification by theorem proving. Event-B has a mature industrial-strength tool support { the Rodin platform. Proof-based verification as well as the reliance on abstraction and decomposition adopted in Event-B provides the designers with a powerful support for the development of complex systems. Moreover, the top-down system development by refinement allows the developers to explicitly express and verify critical system-level properties. Besides ensuring functional correctness, to achieve resilience we also need to analyse a number of non-functional characteristics, such as reliability and performance. Therefore, in this thesis we also demonstrate how formal development in Event-B can be combined with quantitative analysis. Namely, we experiment with integration of such techniques as probabilistic model checking in PRISM and discrete-event simulation in SimPy with formal development in Event-B. Such an integration allows us to assess how changes and di erent recon guration strategies a ect the overall system resilience. The approach proposed in this thesis is validated by a number of case studies from such areas as robotics, space, healthcare and cloud domain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human beings have always strived to preserve their memories and spread their ideas. In the beginning this was always done through human interpretations, such as telling stories and creating sculptures. Later, technological progress made it possible to create a recording of a phenomenon; first as an analogue recording onto a physical object, and later digitally, as a sequence of bits to be interpreted by a computer. By the end of the 20th century technological advances had made it feasible to distribute media content over a computer network instead of on physical objects, thus enabling the concept of digital media distribution. Many digital media distribution systems already exist, and their continued, and in many cases increasing, usage is an indicator for the high interest in their future enhancements and enriching. By looking at these digital media distribution systems, we have identified three main areas of possible improvement: network structure and coordination, transport of content over the network, and the encoding used for the content. In this thesis, our aim is to show that improvements in performance, efficiency and availability can be done in conjunction with improvements in software quality and reliability through the use of formal methods: mathematical approaches to reasoning about software so that we can prove its correctness, together with the desirable properties. We envision a complete media distribution system based on a distributed architecture, such as peer-to-peer networking, in which different parts of the system have been formally modelled and verified. Starting with the network itself, we show how it can be formally constructed and modularised in the Event-B formalism, such that we can separate the modelling of one node from the modelling of the network itself. We also show how the piece selection algorithm in the BitTorrent peer-to-peer transfer protocol can be adapted for on-demand media streaming, and how this can be modelled in Event-B. Furthermore, we show how modelling one peer in Event-B can give results similar to simulating an entire network of peers. Going further, we introduce a formal specification language for content transfer algorithms, and show that having such a language can make these algorithms easier to understand. We also show how generating Event-B code from this language can result in less complexity compared to creating the models from written specifications. We also consider the decoding part of a media distribution system by showing how video decoding can be done in parallel. This is based on formally defined dependencies between frames and blocks in a video sequence; we have shown that also this step can be performed in a way that is mathematically proven correct. Our modelling and proving in this thesis is, in its majority, tool-based. This provides a demonstration of the advance of formal methods as well as their increased reliability, and thus, advocates for their more wide-spread usage in the future.