18 resultados para eigenfunction stochastic volatility models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since its discovery, chaos has been a very interesting and challenging topic of research. Many great minds spent their entire lives trying to give some rules to it. Nowadays, thanks to the research of last century and the advent of computers, it is possible to predict chaotic phenomena of nature for a certain limited amount of time. The aim of this study is to present a recently discovered method for the parameter estimation of the chaotic dynamical system models via the correlation integral likelihood, and give some hints for a more optimized use of it, together with a possible application to the industry. The main part of our study concerned two chaotic attractors whose general behaviour is diff erent, in order to capture eventual di fferences in the results. In the various simulations that we performed, the initial conditions have been changed in a quite exhaustive way. The results obtained show that, under certain conditions, this method works very well in all the case. In particular, it came out that the most important aspect is to be very careful while creating the training set and the empirical likelihood, since a lack of information in this part of the procedure leads to low quality results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this thesis is to research mean return spillovers as well as volatility spillovers from the S&P 500 stock index in the USA to selected stock markets in the emerging economies in Eastern Europe between 2002 and 2014. The sample period has been divided into smaller subsamples, which enables taking different market conditions as well as the unification of the World’s capital markets during the financial crisis into account. Bivariate VAR(1) models are used to analyze the mean return spillovers while the volatility linkages are analyzed through the use of bivariate BEKK-GARCH(1,1) models. The results show both constant volatility pooling within the S&P 500 as well as some statistically significant spillovers of both return and volatility from the S&P 500 to the Eastern European emerging stock markets. Moreover, some of the results indicate that the volatility spillovers have increased as time has passed, indicating unification of global stock markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract The ultimate problem considered in this thesis is modeling a high-dimensional joint distribution over a set of discrete variables. For this purpose, we consider classes of context-specific graphical models and the main emphasis is on learning the structure of such models from data. Traditional graphical models compactly represent a joint distribution through a factorization justi ed by statements of conditional independence which are encoded by a graph structure. Context-speci c independence is a natural generalization of conditional independence that only holds in a certain context, speci ed by the conditioning variables. We introduce context-speci c generalizations of both Bayesian networks and Markov networks by including statements of context-specific independence which can be encoded as a part of the model structures. For the purpose of learning context-speci c model structures from data, we derive score functions, based on results from Bayesian statistics, by which the plausibility of a structure is assessed. To identify high-scoring structures, we construct stochastic and deterministic search algorithms designed to exploit the structural decomposition of our score functions. Numerical experiments on synthetic and real-world data show that the increased exibility of context-specific structures can more accurately emulate the dependence structure among the variables and thereby improve the predictive accuracy of the models.