100 resultados para diluizione,olio,CFD,MCI
Resumo:
Diplomityössä kehitetään malli tiheän kaksifaasivirtauksen aiheuttaman eroosiokulumi-sen mallintamiseksi, ratkaistaan virtauskenttä kahdessa erilaisessa keskipakopumpussa, sovelletaan kehitettyä mallia, sekävertaillaan mallin antamia tuloksia käytännön kokeissa saavutettuihin tuloksiin. Työssä on erityisenä mielenkiinnon kohteena savukaasupesurin pumppu. Työn alkuosa sisältää tarkemman kuvauksen savukaasupesurin toi-minnasta. Numeerinen ratkaisu ja laskentahilan generointi suoritetaan ANSYS CFX- ja Turbo-Grid-ohjelmistoilla. Laskennassa virtauksen Navier-Stokesin yhtälöt on aikakeskiarvo-tettu ja ratkaistu käyttäen kontrollitilavuusmenetelmää. Tiheiden kaksifaasivirtausten eroosiokulumista on mallinnettu tekijän kehittämällä mallilla, jonka käytännön toteutus-ta ei kuitenkaan saateta julkiseksi, koodin kehittämisessä käytetty teoria on kuitenkin esitetty työssä. Työn piirissä tehtiin myös kulumiskokeita Sulzer Pumps Finlandin Karhulan tehtailla, sekä vertailtiin simuloinnin tuloksia aikaisemmissa kokeissa saavutettuihin. Koejärjestelyt kuvataan työssä.
Resumo:
Tässä diplomityössä suunnitellaan yksivaiheisen turbiinin ylisooninen staattori ja alisooninen roottori, tulo-osa ja diffuusori. Työn alussa tarkastellaan aksiaaliturbiinin käyttökohteita ja teoriaa, jonka jälkeen esitetään suunnittelun perustana olevat menetelmät ja periaatteet. Perussuunnittelu tehdään Traupelinmenetelmällä WinAxtu 1.1 suunnitteluohjelmalla ja hyötysuhde arvioidaan lisäksiExcel-pohjaisella laskennalla. Ylisooninen staattori suunnitellaan perussuunnittelun tuloksiin perustuen, soveltamalla karakteristikoiden menetelmää suuttimen laajenevaan osaan ja pinta-alasuhteita suppenevaan osaan. Roottorin keskiviiva piirretään Sahlbergin menetelmällä ja siiven muoto määritetään A3K7 paksuusjakauman sekä tiheän siipihilan muotoilun periaatteita yhdistämällä. Tulo-osa suunnitellaan mahdollisimman jouhevaksi geometriatietojen ja kirjallisuuden esimerkkien mukaisesti. Lopuksi tulo-osaa mallinnetaan CFD-laskennalla. Diffuusori suunnitellaan käyttämällä soveltuvin osin kirjallisuudessa esitettyjätietoja, tulo-osan geometriaa ja CFD-laskentaa. Suunnittelutuloksia verrataan lopuksi kirjallisuudessa esitettyihin tuloksiin ja arvioidaan suunnittelun onnistumista sekä mahdollisia ongelmakohtia.
Resumo:
Diplomityön tavoitteena oli tutkia miten ilman turbulenttisuus vaikuttaa tasaisesti liikkuvan rainan tilaan. Yhtenä sovelluskohteena teollisuudessa voidaan mainita esimerkiksi leiju-kuivain. Tiedetään, että konenopeuksien kasvu ja siitä johtuva ilmavirran nopeuden kasvu aiheuttaa voimavaikutuksia rainaan ja voi aiheuttaa lepatusta. Lepatus johtaa dynaamiseen epästabiilisuuteen, joka voidaan havaita, kun lineaarinen systeemi tulee epävakaaksi ja joh-taa epälineaariseen, rajoitettuun värähtelyyn. Lepatus huonontaa tuotteiden laatua ja voi johtaa ratakatkoihin. Työssä on esitetty tietoa ilman ja rainan vuorovaikutuksesta, jota hyödyntämällä voidaan kehittää yksinkertaistettu malli, jonka avulla liikkuvaa rainaa voidaan simuloida kuivaimes-sa. Kaasufaasin virtausyhtälöt on ratkaistu eri turbulenttimalleja käyttäen. Myös viskoelas-tisen rainan muodonmuutosta on tarkasteltu. Koska rainalle ei ole kirjallisuudesta saatavilla tarkkoja fysikaalisia ja mekaanisia arvoja, näitä ominaisuuksia testattiin eri arvoilla, jotta rainan käyttäytymistä jännityksen alaisena voidaan tarkastella. Näiden ominaisuuksien tun-teminen on ensiarvoisen tärkeää määritettäessä rainan aeroviskoelastista käyttäytymistä. Virtaussimulointi on kallista ja aikaa vievää. Tämä tarkoittaa uusien tutkimusmenetelmien omaksumista. Tässä työssä vaihtoehtoisena lähestymistapana on esitetty yksinkertaistettu malli, joka sisältää ilman ja rainan vuorovaikutusta kuvaavat ominaisuudet. Mallin avulla saadaan tietoa epälineaarisuuden ja turbulenssin vaikutuksesta sekä monimutkaisesta yh-teydestä stabiilisuuden ja ulkoisesti aikaansaadun värähtelyn sekä itse aiheutetun värähtelyn välillä. Työn lopussa on esitetty havainnollinen esimerkki, jolla voidaan kuvata olosuhteita, jossa rainan tasainen liike muuttuu epävakaaksi. Kun turbulenttisuudesta johtuva painevaih-telu ylittää tietyn rajan, rainan värähtely kasvaa muuttuen satunnaisesta järjestäytyneeksi. Saaduttulokset osoittavat, että turbulenttisuudella on suuri vaikutus eikä sitä voi jättää huomioimatta. Myös rainan viskoelastiset ominaisuudet tulee huomioida, jotta rainan käyt-täytymistä voidaan kuvata tarkasti.
Resumo:
Diplomityössä tutkitaan kolmea erilaista virtausongelmaa CFD-mallinnuksella. Yhteistä näille ongelmille on virtaavana aineena oleva ilma. Lisäksi tapausten perinteinen mittaus on erittäin vaikeaa tai mahdotonta. Ensimmäinen tutkimusongelma on tarrapaperirainan kuivain, jonka tuotantomäärä halutaan nostaa kaksinkertaiseksi. Tämä vaatii kuivatustehon kaksinkertaistamista, koska rainan viipymäaika kuivausalueella puolittuu. Laskentayhtälöillä ja CFD-mallinnuksella tutkitaan puhallussuihkun nopeuden ja lämpötilan muutoksien vaikutusta rainan pinnan lämmön- ja massansiirtokertoimiin. Tuloksena saadaan varioitujen suureiden sekä massan- ja lämmönsiirtokertoimien välille riippuvuuskäyrät, joiden perusteella kuivain voidaan säätää parhaallamahdollisella tavalla. Toinen ongelma käsittelee suunnitteilla olevan kuparikonvertterin sekundaarihuuvan sieppausasteen optimointia. Ilman parannustoimenpiteitä käännetyn konvertterin päästöistä suurin osa karkaa ohi sekundaarihuuvan. Tilannetta tutkitaan konvertterissa syntyvän konvektiivisen nostevirtauksen eli päästöpluumin sekä erilaisten puhallussuihkuratkaisujen CFD-mallinnuksella. Tuloksena saadaan puhallussuihkuilla päästöpluumia poikkeuttava ilmaverho. Suurin osa nousevasta päästöpluumista indusoituu ilmaverhoon ja kulkeutuu poistokanavaan. Kolmas tutkittava kohde on suunnitteilla oleva kuparielektrolyysihalli, jossa ilmanvaihtoperiaatteena on luonnollinen ilmanvaihto ja mekaaninen happosumun keräysjärjestelmä. Ilmanvaihtosysteemin tehokkuus ja sisäilman virtaukset halutaan selvittää ennen hallin rakentamista. CFD-mallinnuksella ja laskentayhtälöillä tutkitaan lämpötila- ja virtauskentät sekä hallin läpi virtaava ilmamäärä ja ilmanvaihtoaste. Tulo- ja poistoilma-aukkojen mitoitukseen ja sijoitukseen liittyvät suunnitteluarvot varmennetaan sekä löydetään ilmanvaihdon ongelmakohdat. Ongelmakohtia tutkitaan ja niille esitetään parannusehdotukset.
Resumo:
Ydinvoimalaitokset on suunniteltu ja rakennettu niin, että niillä on kyky selviytyä erilaisista käyttöhäiriöistä ja onnettomuuksista ilman laitoksen vahingoittumista sekä väestön ja ympäristön vaarantumista. On erittäin epätodennäköistä, että ydinvoimalaitosonnettomuus etenee reaktorisydämen vaurioitumiseen asti, minkä seurauksena sydänmateriaalien hapettuminen voi tuottaa vetyä. Jäädytyspiirin rikkoutumisen myötä vety saattaa kulkeutua ydinvoimalaitoksen suojarakennukseen, jossa se voi muodostaa palavan seoksen ilman hapen kanssa ja palaa tai jopa räjähtää. Vetypalosta aiheutuvat lämpötila- ja painekuormitukset vaarantavat suojarakennuksen eheyden ja suojarakennuksen sisällä olevien turvajärjestelmien toimivuuden, joten tehokas ja luotettava vedynhallintajärjestelmä on tarpeellinen. Passiivisia autokatalyyttisiä vetyrekombinaattoreita käytetäänyhä useammissa Euroopan ydinvoimaitoksissa vedynhallintaan. Nämä rekombinaattorit poistavat vetyä katalyyttisellä reaktiolla vedyn reagoidessa katalyytin pinnalla hapen kanssa muodostaen vesihöyryä. Rekombinaattorit ovat täysin passiivisiaeivätkä tarvitse ulkoista energiaa tai operaattoritoimintaa käynnistyäkseen taitoimiakseen. Rekombinaattoreiden käyttäytymisen tutkimisellatähdätään niiden toimivuuden selvittämiseen kaikissa mahdollisissa onnettomuustilanteissa, niiden suunnittelun optimoimiseen sekä niiden optimaalisen lukumäärän ja sijainnin määrittämiseen suojarakennuksessa. Suojarakennuksen mallintamiseen käytetään joko keskiarvoistavia ohjelmia (Lumped parameter (LP) code), moniulotteisia virtausmalliohjelmia (Computational Fluid Dynamics, CFD) tai näiden yhdistelmiä. Rekombinaattoreiden mallintaminen on toteutettu näissä ohjelmissa joko kokeellisella, teoreettisella tai yleisellä (eng. Global Approach) mallilla. Tämä diplomityö sisältää tulokset TONUS OD-ohjelman sisältämän Siemens FR90/1-150 rekombinaattorin mallin vedynkulutuksen tarkistuslaskuista ja TONUS OD-ohjelmalla suoritettujen laskujen tulokset Siemens rekombinaattoreiden vuorovaikutuksista. TONUS on CEA:n (Commissariat à 1'En¬ergie Atomique) kehittämä LP (OD) ja CFD -vetyanalyysiohjelma, jota käytetään vedyn jakautumisen, palamisenja detonaation mallintamiseen. TONUS:sta käytetään myös vedynpoiston mallintamiseen passiivisilla autokatalyyttisillä rekombinaattoreilla. Vedynkulutukseen vaikuttavat tekijät eroteltiin ja tutkittiin yksi kerrallaan. Rekombinaattoreiden vuorovaikutuksia tutkittaessa samaan tilavuuteen sijoitettiin eri kokoisia ja eri lukumäärä rekombinaattoreita. Siemens rekombinaattorimalli TONUS OD-ohjelmassa laskee vedynkulutuksen kuten oletettiin ja tulokset vahvistavat TONUS OD-ohjelman fysikaalisen laskennan luotettavuuden. Mahdollisia paikallisia jakautumia tutkitussa tilavuudessa ei voitu havaita LP-ohjelmalla, koska se käyttäälaskennassa suureiden tilavuuskeskiarvoja. Paikallisten jakautumien tutkintaan tarvitaan CFD -laskentaohjelma.
Resumo:
Päästöjen vähentäminen on ollut viime vuosina tärkeässä osassa polttomoottoreita kehitettäessä.Monet viralliset tahot asettavat uusia tiukempia päästörajoituksia. Päästörajatovat tyypillisesti olleet tiukimmat autoteollisuuden valmistamille pienille nopeakäyntisille diesel-moottoreille, mutta viime aikoina paineita on kohdistunut myös suurempiin keskinopeisiin ja hidaskäyntisiin diesel-moottoreihin. Päästörajat ovat erilaisia riippuen moottorin tyypistä, käytetystä polttoaineesta ja paikasta missä moottoria käytetään johtuen erilaisista paikallisista laeista ja asetuksista. Eniten huomiota diesel-moottorin päästöissä täytyy kohdistaa typen oksideihin, savun muodostukseen sekä partikkeleihin. Laskennallisen virtausmekaniikan (CFD) avulla on hyvät mahdollisuudet tutkia diesel-moottorin sylinterissä tapahtuvia ilmiöitä palamisen aikana. CFD on hyödyllinen työkalu arvioitaessa moottorin suorituskykyä ja päästöjen muodostumista. CFD:llä on mahdollista testata erilaisten parametrien ja geometrioiden vaikutusta ilman kalliita moottorinkoeajoja. CFD:tä voidaan käyttää myös opetustarkoituksessa lisäämään paloprosessin tuntemusta. Tulevaisuudessa palamissimuloinnit CFD:llä tulevat epäilemättä olemaan tärkeä osa moottorin kehityksessä. Tässä diplomityössä on tehty palamissimuloinnit kahteen erilaisilla poittoaineenruiskutuslaitteistoilla varustettuun Wärtsilän keskinopeaan diesel-moottoriin. W46 moottorin ruiskutuslaitteisto on perinteinen mekaanisesti ohjattu pumppusuutin ja W46-CR moottorissa on elektronisesti ohjattu 'common rail' ruiskutuslaitteisto. Näiden moottorien ja käytössä olevien ruiskutusprofiilien lisäksi on simuloinneilla testattu erilaisia uusia ruiskutusprofiileja, jotta erityyppisten profiilien hyvät ja huonot ominaisuudet tulisivat selville. Matalalla kuormalla kiinnostuksen kohteena on nokipäästöjen muodostus ja täydellä kuormalla NOx-päästöjen muodostus ja polttoaineen kulutus. Simulointien tulokset osoittivat, että noen muodostusta matalalla kuormalla voidaan selvästi vähentää monivaiheisella ruiskutuksella, jossa yksi ruiskutusjakso jaetaan kahteen tai useampaan jaksoon. Erityisen tehokas noen vähentämisessä vaikuttaa olevan ns. jälkiruiskutus (post injection). Matalat NOx-päästöt ja hyvä polttoaineen kulutus täydellä kuormalla on mahdollista saavuttaaasteittain nostettavalla ruiskutusnopeudella.
Resumo:
Ohjelmistojen uudelleenkäyttö on hyvin tärkeä käsite ohjelmistotekniikan alueella.Ohjelmistojen uudelleenkäyttötekniikat parantavat ohjelmistokehitysprosessin laatua. Yleisiä ratkaisuja sekä ohjelmiston suunnittelun että arkkitehtuurin uudelleenkäyttöön ovat olio-ohjelmointi ja sovelluskehykset. Tähän asti ei ole ollut olemassa yleisiä tapoja sovelluskehysten erikoistamiseen. Monet nykyääntunnetuista sovelluskehyksistä ovat hyvin suuria ja mutkikkaita. Tällaisten sovelluskehyksien käyttö on monimutkaista myös kokeneille ohjelmoijille. Hyvin dokumentoidut uudelleenkäytettävät sovelluskehyksen rajapinnat parantavat kehyksen käytettävyyttä ja tehostavat myös erikoistamisprosessiakin sovelluskehyksen käyttäjille. Sovelluskehyseditori (framework editor, JavaFrames) on prototyyppityökalu, jota voidaan käyttää yksinkertaistamaan sovelluskehyksen käyttöä. Perusajatus JavaFrames lähestymistavassa ovat erikoistamismallit, joita käytetään kuvamaan sovelluskehyksen uudelleenkäytettäviä rajapintoja. Näihin malleihin perustuen JavaFrames tarjoaa automaattisen lähdekoodi generaattorin, dokumentoinninja arkkitehtuurisääntöjen tarkistuksen. Tämä opinnäyte koskee graafisen mallieditorin kehittämistä JavaFrames ympäristöön. Työssä on laadittu työkalu,jonka avulla voidaan esittää graafisesti erikoistamismalli. Editori sallii uusien mallien luomisen, vanhojen käyttämättä olevien poistamisen, kuten myös yhteyksien lisäämisen mallien välille. Tällainen graafinen tuki JavaFrames ympäristöönvoi huomattavasti yksinkertaistaa sen käyttöä ja tehdä sovellusten kehittämisprosessista joustavamman.
Resumo:
Sulku- jasäätölaitteita käytetään kaasuvirtausten estämiseen ja ohjaukseen. Yleinen rakennetyyppi on sälerakenne, jossa kanavaan asennettuja akseloituja säleitä kääntämällä saadaan virtauksen vapaata pinta-alaa säädettyä. Sulkulaitteiden virtauksenestokyky riippuu tiiveydestä kiinni-asennossa. Säätölaitteiden virtauksen rajoittamiskyky muuttuu asetuskulman mukaan eri konstruktioilla eri lailla. Työn tavoitteena on ollut tuottaa tehtyjen tutkimusten tuloksista pohjatiedot työn yhteydessä luotavaan raportointi- ja laskentasovellukseen, jolla on mahdollista riittävän tarkasti arvioida Sammet Dampers Oy:n tuotannossa olevien sälerakenteisten sulku- ja säälaitteiden ominaisuuksia ilman tapauskohtaista mittaamista tai mallintamista sekä tuottaa samalla asiakkaille valmiit raportit näistä ominaisuuksista. Tehtyjen tutkimusten pääpaino on ollut säätölaitteissa. Tutkimuksissa on selvitetty mm. säleiden lukumäärän, korkeussuhteen, sivusuhteen ja Reynoldsin luvun vaikutusta laitteen vastuskertoimeen ennalta määritellyillä asetuskulmilla. Tutkimukset koostuvat mallikokeista ja CFD-laskennasta. Lisäksi työn pohjana on ollut huomattava määrä aikaisempia selvityksiä. Työn tavoitteiden täyttämisessä on onnistuttu tyydyttävästi. Tutkittujen tekijöiden vaikutuksille vastuskertoimiin on luotu sovitteet mittausten ja CFD:n perusteella. CFDon osoittautunut käyttökelpoiseksi vain hyvin rajatulle joukolle tapauksia.
Resumo:
Diplomityön tavoitteena oli tutkia, miten uusi arkkitehtuurialusta soveltuu erään teolli-suusyrityksen tietojärjestelmien kehittämiseen ja sovellusten toteuttamiseen. Työssä keskeisin käsite oli ohjelmistoarkkitehtuuri ja siihen liittyvät suunnittelumallit sekä komponentit, jotka hyvin suunniteltuina toimivat perustana nopeammalle sovelluskehi-tykselle. Tutkimusmetodina käytettiin konstruktiivista (suunnittelutieteellistä) tutkimusmetodia. Sen vahvat ominaisuudet tukevat tutkimusaiheen innovatiivisuutta sekä soveltavan tie-teen käyttöä uuden tiedon tuottamiseksi. Heikkoutena voinee pitää tulosten analysoinnin vaikeutta, sillä evaluointi tapahtuu käytännöstä saatujen kokemusten perusteella. Työn tuloksena saatiin lisätietämystä komponenttiensuunnitteluun ja toteutukseen liit-tyvissä kysymyksissä. Lisäksi sovelluspalvelimelle luotiin joukko komponentteja, joita tullaan käyttämään jatkossa tietokantasovelluksissa: uusien komponenttien suunnittelua jatketaan ja järjestelmien suunnittelua muutetaan oliopohjaiseksi.
Resumo:
Tässä loppuraportissa esitetään projektin "Kannattavuusanalyysi ORC-voimalan soveltamisesta hyödyntämään dieselvoimalan hukkalämpöä, Tekes DrNo 1549/401/98" tulokset. ORC-prosessilla (Organic Rankine Cycle) tarkoitetaan Rankine-prosessia, jossakiertoaineena veden asemesta on sopiva orgaaninen neste, esimerkiksi tolueeni. ORC-prosessi soveltuu hyvin nimenomaan matalalla lämpötilatasolla vapautuvan hukkalämmön hyödyntämiseen. Tutkimus liittyy vuonna 1981 aloitettuun suurnopeustekniikan tutkimushankkeeseen. Tutkimuksen lähtökohtana oli tropiikin olosuhteissa peruskuormaa ajava raskasöljykäyttöinen Wärtsilä NSD 18V46 voimalaitosmoottori, jonka hukkalämmöistä tuli kyetä tuottamaan sähköä mahdollisimman alhaisilla investointikustannuksilla. Kaukolämmöntuotanto rajattiin tämän selvityksen ulkopuolelle. Edullisimmaksi perustapaukseksi valittiin seitsemän turbogeneraattorin ORC-laitos, joka hyödyntää ainoastaan moottorin pakokaasulämpöä. Kyseisen ORC-laitoksen nettosähköteho on 1142 kW, joten se lisäisi dieselmoottorin tehoa 6,8 %. ORC-laitoksen myyntihinta olisi noin 7,67 Mmk, mikäli lauhdutin voidaan rakentaa ruostumattomasta teräksestä ja noin 9,01 Mmk, mikäli olisi käytettävä titaanilauhdutinta. ORC-laitoksen ominaisinvestointikustannus olisi siten noin 6700 mk/kW - 7900 mk/kW materiaalivalinnoista riippuen. Mainittu hinta sisältää sekä komponenttien valmistajien että systeemi-integraattorin katteet. Koska höyrystimen hinta vaikuttaa olennaisesti ORC-laitoksen hintaan, voidaan puhtailla maakaasupolton savukaasuilla arvioida ominaisinvestoinnin olevan noin 1000 mk/kW alhaisempi. Olettaen 6000 h/a huipun käyttöaika saadaan ORC:llä tuotetun sähkön hinnaksi noin 0,11 mk/kWh. Suomeen rakennettavalle ORC-laitokselle on todennäköisesti lisäksi saatavissa 30 % investointituki ja sähköveron palautus. - Teoriassa voidaan osoittaa, että dieselmoottorin tehoa voidaan ORC:llä lisätä jopa 18 %, mutta ominaisinvestointi on tällöin merkittävästi korkeampi. ORC-laitoksen turbiinin 1D suunnittelua tarkennettiin sekä laitoksen turbiini mallinnettiin CFD-laskennan (numeerisen virtauslaskennan) avulla osana tätä tutkimusta. Näin kyettiin nostamaan turbiinin hyötysuhdetta, ja CFD-laskennan perusteella voidaan nyt aikaisempaa varmemmin ennustaa turbiinin todellinen hyötysuhde. ORC-laitoksen dynaaminen simulointiohjelma saatiin niin ikään valmiiksi tämän projektin puitteissa. Simulointiohjelman avulla voitiin asettaa laitoksen säädinparametrit sekä simuloida voimalan käynnistys-, ajo- sekä häiriötilanteita. Tehtyjen simulointien perusteella tehtiin johtopäätökset laitoksen säätöjärjestelmän toimivuudesta ja tuorehöyryn tilaarvojen valinnasta.
Resumo:
Tämä opetusmoniste koostuu turbokonetekniikan seminaarin lukuvuonna 2002-2003 suorittaneiden perus- ja jatko-opiskelijoiden laatimista seminaariesitelmistä. Opetusmoniste koostuu seuraavista osista: Jani Ikonen: Materiaalin valinta kaasuturbiinin turbiiniin huomioiden uusimmat materiaalit. 20 sivua. Ikonen esittää työssään katsauksen materiaalien valintaan kaasuturbiinissa, korkean lämpötilan materiaalien tulevaisuudennäkymiin,korroosiolta ja korkeilta lämpötiloilta suojaaviin pinnoitteisiin sekä joihinkin teollisuuskaasuturbiinien komponenttien valmistusmenetelmiin. Jouni Ritvanen: Värähtelymittaukset ja niiden tulkinta. 19 sivua. Kaikki laitteet värähtelevät käydessään. Värähtelyä aiheutuu yleensä epätasapainosta, valmistus- tai asennusvirheistä sekä kuluneista tai muuten vaurioituneista osista. Ritvanen tarkastelee työssään värähtelyä, värähtelyn mittausta ja tuloksien tarkastelua. Jarkko Vanhanen: Vaaka-akselisen 3 MW:n tuuliturbiinin siipien perussuunnittelu Utön olosuhteisiin, 18 sivua Vanhanen mitoittaa työssään 3 MW:n tuulivoimalan Utön ulkosaariston olosuhteisiin. Tuuliturbiini on vaaka-akselinen ja 3 siipinen. Mitoituksessa käytetään Schmitzin menetelmää joka on tarkempi kuin Betzin kriteeri. Weibull-jakauman avulla lasketaan mitoituksella saadun turbiinin teho eri kuukausina. Lisäksi tarkastellaan huipun käyttöaikaa ja tuotettua energiamäärää. Jani Keränen:Kolmidimesionaalinen siipisolavirtaus aksiaaliturbiinissa. 12 sivua. Keränen käsittelee työssään kolmidimensionaalista virtausta aksiaalisessa turbokoneessa. Työssä luodaan kuva toisiovirtauksen pääkomponentteihin: hevosenkenkäpyörteeseen,kanavapyörteeseen, kulmapyörteisiin ja jättöreunapyörteisin. Työssä selitetään kyseisten pyörteiden aiheuttamien häviöiden alkuperää ja tuodaan esille joitain keinoja, joilla pyörteilyä hallitaan. Lisäksi aihetta on käsitelty suppeasti myös numeerisen virtauslaskennan (CFD:n) kannalta. Teemu Turunen-Saaresti: Radiaalikompressorin ajansuhteen tarkka CFD-laskenta. 15 sivua. Turunen-Saaresti on seminaarityössään laskenut ajansuhteen tarkalla CFD-laskennalla radiaalikompressorinkahdessa eri toimintapisteessä. Lasketut toimintapisteet ovat suunnittelupiste ja toimintapiste lähellä tukkeumaa. Ajansuhteen tarkassa laskennassa mallinnetaan koko kompressori ja kytketään pyörivät ja paikallaan olevat osat toisiinsa liukuhilatekniikan avulla. Laskettuja arvoja verrataan Virtaustekniikan laboratoriossa kyseisestä kompressorista tehtyihin mittaustuloksiin.
Resumo:
Tässä raportissa on esitettyaksiaalisen turbiinivaiheen suunnittelun perusperiaatteet perustuen ideaalikaasun paisuntaprosessin termodynamiikkaan yhdistettynä kokemusperäisiin häviökertoimiin. Häviökertoimien avulla voidaan arvioida turbiinin siivistössä syntyvien aerodynaamisten häviöiden suuruutta ja jakaantumista. Niiden määrittämiseksi on esitetty yhteenvetomaisesti kolme tunnettua ja kirjallisuudessa runsaasti siteerattua laskentamenetelmää. Esitettyjen laskentaperiaatteiden avulla voidaan arvioida annetuissa toimintaolosuhteissa tietyllä virtaus- ja siipigeometrialla rakennetun turbiinivaiheen teho, hyötysuhde ja paisuvan kaasun tila-arvot eri kohdissa turbiinia. Annetut yhtälöt ovat suhteellisen helposti ohjelmoitavissa tietokoneella ohjelmaksi, mikä käytännössä helpottaa huomattavasti esimerkiksi optimaalisen virtausgeometrian etsintää tai off-design analyysiä. Saadut tulokset eivät välttämättä ole absoluuttisen tarkkoja johtuen tehdyistä yksinkertaistuksista ja häviökertoimien epätarkkuuksista. Ne soveltuvat kuitenkin hyvin suuruusluokkatarkasteluun ja erilaisten ratkaisujen suhteellisten erojen arviointiin sekä lähtökohdaksi tarkempaan numeeriseen laskentaan (CFD). Työ liittyy LTKK:n Energiatekniikan osastolla tehtävään suurnopeustekniikan koelaitetutkimukseen. Työssä esitettyjä menetelmiä on hyödynnetty käänteisen Brayton-prosessin turbiinin rakenteellisessa esisuunnittelussa ja feasibility-selvityksessä. Lisäksi raportti on hyödyksi turbotekniikan opetusmateriaalina.
Resumo:
This work deals with the cooling of high-speed electric machines, such as motors and generators, through an air gap. It consists of numerical and experimental modelling of gas flow and heat transfer in an annular channel. Velocity and temperature profiles are modelled in the air gap of a high-speed testmachine. Local and mean heat transfer coefficients and total friction coefficients are attained for a smooth rotor-stator combination at a large velocity range. The aim is to solve the heat transfer numerically and experimentally. The FINFLO software, developed at Helsinki University of Technology, has been used in the flow solution, and the commercial IGG and Field view programs for the grid generation and post processing. The annular channel is discretized as a sector mesh. Calculation is performed with constant mass flow rate on six rotational speeds. The effect of turbulence is calculated using three turbulence models. The friction coefficient and velocity factor are attained via total friction power. The first part of experimental section consists of finding the proper sensors and calibrating them in a straight pipe. After preliminary tests, a RdF-sensor is glued on the walls of stator and rotor surfaces. Telemetry is needed to be able to measure the heat transfer coefficients at the rotor. The mean heat transfer coefficients are measured in a test machine on four cooling air mass flow rates at a wide Couette Reynolds number range. The calculated values concerning the friction and heat transfer coefficients are compared with measured and semi-empirical data. Heat is transferred from the hotter stator and rotor surfaces to the coolerair flow in the air gap, not from the rotor to the stator via the air gap, althought the stator temperature is lower than the rotor temperature. The calculatedfriction coefficients fits well with the semi-empirical equations and precedingmeasurements. On constant mass flow rate the rotor heat transfer coefficient attains a saturation point at a higher rotational speed, while the heat transfer coefficient of the stator grows uniformly. The magnitudes of the heat transfer coefficients are almost constant with different turbulence models. The calibrationof sensors in a straight pipe is only an advisory step in the selection process. Telemetry is tested in the pipe conditions and compared to the same measurements with a plain sensor. The magnitudes of the measured data and the data from the semi-empirical equation are higher for the heat transfer coefficients than thenumerical data considered on the velocity range. Friction and heat transfer coefficients are presented in a large velocity range in the report. The goals are reached acceptably using numerical and experimental research. The next challenge is to achieve results for grooved stator-rotor combinations. The work contains also results for an air gap with a grooved stator with 36 slots. The velocity field by the numerical method does not match in every respect the estimated flow mode. The absence of secondary Taylor vortices is evident when using time averagednumerical simulation.
Resumo:
Concerning process control of batch cooling crystallization the present work focused on the cooling profile and seeding technique. Secondly, the influence of additives on batch-wise precipitation process was investigated. Moreover, a Computational Fluid Dynamics (CFD) model for simulation of controlled batch cooling crystallization was developed. A novel cooling model to control supersaturation level during batch-wise cooling crystallization was introduced. The crystallization kinetics together with operating conditions, i.e. seed loading, cooling rate and batch time, were taken into account in the model. Especially, the supersaturation- and suspension density- dependent secondary nucleation was included in the model. The interaction between the operating conditions and their influence on the control target, i.e. the constant level of supersaturation, were studied with the aid of a numerical solution for the cooling model. Further, the batch cooling crystallization was simulated with the ideal mixing model and CFD model. The moment transformation of the population balance, together with the mass and heat balances, were solved numerically in the simulation. In order to clarify a relationship betweenthe operating conditions and product sizes, a system chart was developed for anideal mixing condition. The utilization of the system chart to determine the appropriate operating condition to meet a required product size was introduced. With CFD simulation, batch crystallization, operated following a specified coolingmode, was studied in the crystallizers having different geometries and scales. The introduced cooling model and simulation results were verified experimentallyfor potassium dihydrogen phosphate (KDP) and the novelties of the proposed control policies were demonstrated using potassium sulfate by comparing with the published results in the literature. The study on the batch-wise precipitation showed that immiscible additives could promote the agglomeration of a derivative of benzoic acid, which facilitated the filterability of the crystal product.
Resumo:
In a centrifugal compressor the flow around the diffuser is collected and led to the pipe system by a spiral-shaped volute. In this study a single-stage centrifugal compressor with three different volutes is investigated. The compressorwas first equipped with the original volute, the cross-section of which was a combination of a rectangle and semi-circle. Next a new volute with a fully circular cross-section was designed and manufactured. Finally, the circular volute wasmodified by rounding the tongue and smoothing the tongue area. The overall performance of the compressor as well as the static pressure distribution after the impeller and on the volute surface were measured. The flow entering the volute was measured using a three-hole Cobra-probe, and flow visualisations were carriedout in the exit cone of the volute. In addition, the radial force acting on theimpeller was measured using magnetic bearings. The complete compressor with thecircular volute (inlet pipe, full impeller, diffuser, volute and outlet pipe) was also modelled using computational fluid dynamics (CFD). A fully 3-D viscous flow was solved using a Navier-Stokes solver, Finflo, developed at Helsinki University of Technology. Chien's k-e model was used to take account of the turbulence. The differences observed in the performance of the different volutes were quite small. The biggest differences were at low speeds and high volume flows,i.e. when the flow entered the volute most radially. In this operating regime the efficiency of the compressor with the modified circular volute was about two percentage points higher than with the other volutes. Also, according to the Cobra-probe measurements and flow visualisations, the modified circular volute performed better than the other volutes in this operating area. The circumferential static pressure distribution in the volute showed increases at low flow, constant distribution at the design flow and decrease at high flow. The non-uniform static pressure distribution of the volute was transmitted backwards across the vaneless diffuser and observed at the impeller exit. At low volume flow a strong two-wave pattern developed into the static pressure distribution at the impeller exit due to the response of the impeller to the non-uniformity of pressure. The radial force of the impeller was the greatest at the choke limit, the smallest atthe design flow, and moderate at low flow. At low flow the force increase was quite mild, whereas the increase at high flow was rapid. Thus, the non-uniformityof pressure and the force related to it are strong especially at high flow. Theforce caused by the modified circular volute was weaker at choke and more symmetric as a function of the volume flow than the force caused by the other volutes.