27 resultados para desorption isotherms
Resumo:
In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.
Resumo:
Ion mobility spectrometry (IMS) is a straightforward, low cost method for fast and sensitive determination of organic and inorganic analytes. Originally this portable technique was applied to the determination of gas phase compounds in security and military use. Nowadays, IMS has received increasing attention in environmental and biological analysis, and in food quality determination. This thesis consists of literature review of suitable sample preparation and introduction methods for liquid matrices applicable to IMS from its early development stages to date. Thermal desorption, solid phase microextraction (SPME) and membrane extraction were examined in experimental investigations of hazardous aquatic pollutants and potential pollutants. Also the effect of different natural waters on the extraction efficiency was studied, and the utilised IMS data processing methods are discussed. Parameters such as extraction and desorption temperatures, extraction time, SPME fibre depth, SPME fibre type and salt addition were examined for the studied sample preparation and introduction methods. The observed critical parameters were extracting material and temperature. The extraction methods showed time and cost effectiveness because sampling could be performed in single step procedures and from different natural water matrices within a few minutes. Based on these experimental and theoretical studies, the most suitable method to test in the automated monitoring system is membrane extraction. In future an IMS based early warning system for monitoring water pollutants could ensure the safe supply of drinking water. IMS can also be utilised for monitoring natural waters in cases of environmental leakage or chemical accidents. When combined with sophisticated sample introduction methods, IMS possesses the potential for both on-line and on-site identification of analytes in different water matrices.
Resumo:
Asymmetric synthesis using modified heterogeneous catalysts has gained lots of interest in the production of optically pure chemicals, such as pharmaceuticals, nutraceuticals, fragrances and agrochemicals. Heterogeneous modified catalysts capable of inducing high enantioselectivities are preferred in industrial scale due to their superior separation and handling properties. The topic has been intensively investigated both in industry and academia. The enantioselective hydrogenation of ethyl benzoylformate (EBF) to (R)-ethyl mandelate over (-)-cinchonidine (CD)-modified Pt/Al2O3 catalyst in a laboratory-scale semi-batch reactor was studied as a function of modifier concentration, reaction temperature, stirring rate and catalyst particle size. The main product was always (R)-ethyl mandelate while small amounts of (S)-ethyl mandelate were obtained as by product. The kinetic results showed higher enantioselectivity and lower initial rates approaching asymptotically to a constant value as the amount of modifier was increased. Additionally, catalyst deactivation due to presence of impurities in the feed was prominent in some cases; therefore activated carbon was used as a cleaning agent of the raw material to remove impurities prior to catalyst addition. Detailed characterizations methods (SEM, EDX, TPR, BET, chemisorption, particle size distribution) of the catalysts were carried out. Solvent effects were also studied in the semi-batch reactor. Solvents with dielectric constant (e) between 2 and 25 were applied. The enantiomeric excess (ee) increased with an increase of the dielectric coefficient up to a maximum followed by a nonlinear decrease. A kinetic model was proposed for the enantioselectivity dependence on the dielectric constant based on the Kirkwood treatment. The non-linear dependence of ee on (e) successfully described the variation of ee in different solvents. Systematic kinetic experiments were carried out in the semi-batch reactor. Toluene was used as a solvent. Based on these results, a kinetic model based on the assumption of different number of sites was developed. Density functional theory calculations were applied to study the energetics of the EBF adsorption on pure Pt(1 1 1). The hydrogenation rate constants were determined along with the adsorption parameters by non-linear regression analysis. A comparison between the model and the experimental data revealed a very good correspondence. Transient experiments in a fixed-bed reactor were also carried out in this work. The results demonstrated that continuous enantioselective hydrogenation of EBF in hexane/2-propanol 90/10 (v/v) is possible and that continuous feeding of (-)-cinchonidine is needed to maintain a high steady-state enantioselectivity. The catalyst showed a good stability and high enantioselectivity was achieved in the fixed-bed reactor. Chromatographic separation of (R)- and (S)-ethyl mandelate originating from the continuous reactor was investigated. A commercial column filled with a chiral resin was chosen as a perspective preparative-scale adsorbent. Since the adsorption equilibrium isotherms were linear within the entire investigated range of concentrations, they were determined by pulse experiments for the isomers present in a post-reaction mixture. Breakthrough curves were measured and described successfully by the dispersive plug flow model with a linear driving force approximation. The focus of this research project was the development of a new integrated production concept of optically active chemicals by combining heterogeneous catalysis and chromatographic separation technology. The proposed work is fundamental research in advanced process technology aiming to improve efficiency and enable clean and environmentally benign production of enantiomeric pure chemicals.
Resumo:
Tämän kandidaatintyön tavoitteena oli selvittää mahdollisuuksia 14C:n kemiallisten muotojen eriyttämiseen käyttäen Loviisan voimalaitoksella olemassa olevaa näytteenkeräyslaitteistoa. Lisäksi tarkoituksena oli selvittää parhaiten tähän käyttötarkoitukseen soveltuva zeoliittityyppiä tyypeistä 4A, 5A ja 13X. Työn kirjallisessa osassa käsitellään ydinvoimalaitoksen C14-päästöjä keskittyen pääosin Loviisan VVER-laitokseen. Adsorption osalta esitellään kaupallisesti käytettyjä adsorptiomateriaaleja ja paneudutaan adsorptioon fysikaalisena ja kemiallisena ilmiönä. Lisäksi esitellään kahden desorptiomenetelmän perusperiaatteet. Kirjallisen osan lopussa kootaan tutkimukseen vaikuttavia tekijöitä ja esitellään aiemmin käytössä ollut näytteenkeräyslaitteisto. Kokeellisessa osassa esitellään työssä käytetyt laitteistot. Lisäksi on kuvattu mittausten suoritus nestetuikelaskurilla. Tämän jälkeen työssä esitellään mittaustuloksien käsittely ja näin saadut tulokset.
Resumo:
Electrokinetics has emerged as a potential technique for in situ soil remediation and especially unique because of the ability to work in low permeability soil. In electrokinetic remediation, non-polar contaminants like most organic compounds are transported primarily by electroosmosis, thus the process is effective only if the contaminants are soluble in pore fluid. Therefore, enhancement is needed to improve mobility of these hydrophobic compounds, which tend to adsorb strongly to the soil. On the other hand, as a novel and rapidly growing science, the applications of ultrasound in environmental technology hold a promising future. Compared to conventional methods, ultrasonication can bring several benefits such as environmental friendliness (no toxic chemical are used or produced), low cost, and compact instrumentation. It also can be applied onsite. Ultrasonic energy applied into contaminated soils can increase desorption and mobilization of contaminants and porosity and permeability of soil through developing of cavitation. The research investigated the coupling effect of the combination of these two techniques, electrokinetics and ultrasonication, in persistent organic pollutant removal from contaminated low permeability clayey soil (with kaolin as a model medium). The preliminary study checked feasibility of ultrasonic treatment of kaolin highly contaminated by persistent organic pollutants (POPs). The laboratory experiments were conducted in various conditions (moisture, frequency, power, duration time, initial concentration) to examine the effects of these parameters on the treatment process. Experimental results showed that ultrasonication has a potential to remove POPs, although the removal efficiencies were not high with short duration time. The study also suggested intermittent ultrasonication over longer time as an effective means to increase the removal efficiencies. Then, experiments were conducted to compare the performances among electrokinetic process alone and electrokinetic processes combined with surfactant addition and mainly with ultrasonication, in designed cylinders (with filtercloth separating central part and electrolyte parts) and in open pans. Combined electrokinetic and ultrasonic treatment did prove positive coupling effect compared to each single process alone, though the level of enhancement is not very significant. The assistance of ultrasound in electrokinetic remediation can help reduce POPs from clayey soil by improving the mobility of hydrophobic organic compounds and degrading these contaminants through pyrolysis and oxidation. Ultrasonication also sustains higher current and increases electroosmotic flow. Initial contaminant concentration is an essential input parameter that can affect the removal effectiveness.
Resumo:
In recent decades, industrial activity growth and increasing water usage worldwide have led to the release of various pollutants, such as toxic heavy metals and nutrients, into the aquatic environment. Modified nanocellulose and microcellulose-based adsorption materials have the potential to remove these contaminants from aqueous solutions. The present research consisted of the preparation of five different nano/microcellulose-based adsorbents, their characterization, the study of adsorption kinetics and isotherms, the determination of adsorption mechanisms, and an evaluation of adsorbents’ regeneration properties. The same well known reactions and modification methods that were used for modifying conventional cellulose also worked for microfibrillated cellulose (MFC). The use of succinic anhydride modified mercerized nanocellulose, and aminosilane and hydroxyapatite modified nanostructured MFC for the removal of heavy metals from aqueous solutions exhibited promising results. Aminosilane, epoxy and hydroxyapatite modified MFC could be used as a promising alternative for H2S removal from aqueous solutions. In addition, new knowledge about the adsorption properties of carbonated hydroxyapatite modified MFC as multifunctional adsorbent for the removal of both cations and anions ions from water was obtained. The maghemite nanoparticles (Fe3O4) modified MFC was found to be a highly promising adsorbent for the removal of As(V) from aqueous solutions due to its magnetic properties, high surface area, and high adsorption capacity . The maximum removal efficiencies of each adsorbent were studied in batch mode. The results of adsorption kinetics indicated very fast removal rates for all the studied pollutants. Modeling of adsorption isotherms and adsorption kinetics using various theoretical models provided information about the adsorbent’s surface properties and the adsorption mechanisms. This knowledge is important for instance, in designing water treatment units/plants. Furthermore, the correspondence between the theory behind the model and properties of the adsorbent as well as adsorption mechanisms were also discussed. On the whole, both the experimental results and theoretical considerations supported the potential applicability of the studied nano/microcellulose-based adsorbents in water treatment applications.
Resumo:
Bioetanolin valmistus selluloosapitoisista raaka-aineista vaatii selluloosapolymeerien pilkkomisen liukoisiksi sokereiksi. Tämä voidaan toteuttaa entsymaattisella hydrolyysillä. Selluloosan pilkkomiseen tarkoitetut entsyymit, sellulaasit, ovat entsymaattisen hydrolyysin jälkeen sitoutuneet joko kiintoainefaasiin tai ovat nestemäisessä faasissa ns. vapaina entsyymeinä. Prosessin taloudellisuuden kannalta on erityisen tärkeää minimoida siinä käytettävien entsyymien tarve, sillä tehokkaat entsyymivalmisteet ovat suhteellisen kalliita. Yksi varteenotettava vaihtoehto bioetanoliprosessin saamiseksi taloudellisemmaksi on käytettyjen entsyymien talteenotto ja kierrätys. Työn tarkoituksena oli selvittää kirjallisuudesta, millaisia menetelmiä on kehitetty entsyymien talteenottoon ja kierrätykseen lignoselluloosasta valmistettavan bioetanolin valmistuksessa. Työssä on keskitytty tuoreisiin tutkimuksiin ja menetelmien käyttökelpoisuuteen ja taloudellisuuteen. Viime vuosina sellulaasien talteenotto- ja kierrätysmenetelmiä koskevat tutkimukset ovat keskittyneet pääasiassa käsittelemään nanopartikkelien avulla tapahtuvaa entsyymien immobilisointia, ultrasuodatusta, erilaisia desorptiomenetelmiä, kiinteän hydrolyysijäännöksen kierrättämistä, tuoreen substraatin lisäämistä sekä myös tislausvaiheen jälkeistä entsyymien kierrättämistä. Jotta kierrätysmenetelmä olisi tehokas, tulisi sen pyrkiä säilyttämään entsyymien aktiivisuuksia, sokerisaantoa menettämättä ja sisältää sekä neste-, että kiintoainefaasista tapahtuva kierrätys. Jokaisella kierrätysmenetelmällä on hyvät ja huonot puolensa. Entsyymien talteenottoastetta saadaan kuitenkin parannettua yhdistämällä erilaisia menetelmiä. Useista tutkimuksista huolimatta, taloudellisinta ja käyttökelpoisinta entsyymien talteenotto- ja kierrätysmenetelmää ei ole vielä saavutettu.
Resumo:
Arsenic is a toxic substance. The amount of arsenic in waste water is a raising problem because of increasing mining industry. Arsenic is connected to cancers in areas where arsenic concentration in drinking water is higher than recommendations. The main object in this master’s thesis was to research how ferrous hydroxide waste material is adsorbed arsenic from ammonia containing waste water. In this master’s thesis there is two parts: theoretical and experimental part. In theoretical part harmful effects of arsenic, theory of adsorption, isotherms modeling of adsorption and analysis methods of arsenic are described. In experimental part adsorption capacity of ferrous hydroxide waste material and adsorption time with different concentrations of arsenic were studied. Waste material was modified with two modification methods. Based on experimental results the adsorption capacity of waste material was high. The problem with waste material was that at same time with arsenic adsorption sulfur was dissolving in solution. Waste material was purified from sulfur but purification methods were not efficient enough. Purification methods require more research.
Resumo:
A method to synthesize ethyl β-ᴅ-glucopyranoside (BEG) was searched. Feasibility of different ion exchange resins was examined to purify the product from the synthetic binary solution of BEG and glucose. The target was to produce at least 50 grams of 99 % pure BEG with a scaled up process. Another target was to transfer the batch process into steady-state recycle chromatography process (SSR). BEG was synthesized enzymatically with reverse hydrolysis utilizing β-glucosidase as a catalyst. 65 % of glucose reacted with ethanol into BEG during the synthesis. Different ion exchanger based resins were examined to separate BEG from glucose. Based on batch chromatography experiments the best adsorbent was chosen between styrene based strong acid cation exchange resins (SAC) and acryl based weak acid cation exchange resins (WAC). CA10GC WAC resin in Na+ form was chosen for the further separation studies. To produce greater amounts of the product the batch process was scaled up. The adsorption isotherms for the components were linear. The target purity was possible to reach already in batch without recycle with flowrate and injection size small enough. 99 % pure product was produced with scaled-up batch process. Batch process was transferred to SSR process utilizing the data from design pulse chromatograms and Matlab simulations. The optimal operating conditions for the system were determined. Batch and SSR separation results were compared and by using SSR 98 % pure products were gained with 40 % higher productivity and 40 % lower eluent consumption compared to batch process producing as pure products.
Resumo:
Solvent extraction of calcium and magnesium impurities from a lithium-rich brine (Ca ~ 2,000 ppm, Mg ~ 50 ppm, Li ~ 30,000 ppm) was investigated using a continuous counter-current solvent extraction mixer-settler set-up. The literature review includes a general review about resources, demands and production methods of Li followed by basics of solvent extraction. Experimental section includes batch experiments for investigation of pH isotherms of three extractants; D2EHPA, Versatic 10 and LIX 984 with concentrations of 0.52, 0.53 and 0.50 M in kerosene respectively. Based on pH isotherms LIX 984 showed no affinity for solvent extraction of Mg and Ca at pH ≤ 8 while D2EHPA and Versatic 10 were effective in extraction of Ca and Mg. Based on constructed pH isotherms, loading isotherms of D2EHPA (at pH 3.5 and 3.9) and Versatic 10 (at pH 7 and 8) were further investigated. Furthermore based on McCabe-Thiele method, two extraction stages and one stripping stage (using HCl acid with concentration of 2 M for Versatic 10 and 3 M for D2EHPA) was practiced in continuous runs. Merits of Versatic 10 in comparison to D2EHPA are higher selectivity for Ca and Mg, faster phase disengagement, no detrimental change in viscosity due to shear amount of metal extraction and lower acidity in stripping. On the other hand D2EHPA has less aqueous solubility and is capable of removing Mg and Ca simultaneously even at higher Ca loading (A/O in continuous runs > 1). In general, shorter residence time (~ 2 min), lower temperature (~23 °C), lower pH values (6.5-7.0 for Versatic 10 and 3.5-3.7 for D2EHPA) and a moderately low A/O value (< 1:1) would cause removal of 100% of Ca and nearly 100% of Mg while keeping Li loss less than 4%, much lower than the conventional precipitation in which 20% of Li is lost.
Resumo:
The aim of this work was to study techniques to extract and purify of anthocyanins from purple-blue potato. This topic was determined as a master’s thesis and it was done in collaboration with the Food Chemistry and Food Development Department of University of Turku and Department of Chemical and Process Engineering at Lappeenranta University of Technology. At first, purple-blue potatoes were pretreated in four types of boiled, raw, freeze-dried and dried boiled potato for extraction. They were mixed with aqueous acidified ethanol (ethanol:water:acetic acid 40%:53%:7% v/v) for conventional extraction. Boiled potato was selected as a best pretreated potato. Different ethanol concentration and extraction time were examined and the mixture of 80% in 24 h resulted in maximum anthocyanin content (132.23 mg/L). As conventional extraction method of anthocyanins was non-selective, some of impurities such as free sugars might accelerate anthocyanin degradation. Therefore, to obtain anthocyanins in purified form, adsorption as a promising selective method was used to recovery and isolate anthocyanins. It was carried out with six adsorbents. Among those, Amberlite XAD-7HP, a nonionic acrylic ester adsorbent, was found to have the best performance. In an adsorption column, flow rate of 3 mL/min was selected as the loading flow rate among four tested flow rates. Eluent volume and flow rate were 3 BV of aqueous acidified ethanol (75%, v/v) and 1 mL/min for desorption. The quantification of the total anthocyanin contents was performed by pH-differential method using UV-vis spectrophotometer. The resulting anthocyanin solution after purification was almost free from free sugars which were the major cause for degradation of anthocyanins. The average anthocyanin concentration in the purified and concentrated sample was obtained 1752.89 mg/L.
Resumo:
Direct air capture technologies extract CO2 from air at a concentration of as low as 400ppm. The captured CO2 can be used for the production of synthetic methane or liquid fuels. In the literature survey of this thesis, results related to direct air capture by using solid sorbents are presented and critically discussed. In the experimental part, a proprietary amine functionalized resin is characterized for direct air capture. Structural comparison is also made to a commercial resin of similar type. Based on the literature survey, the most important parameters in direct air capture process are low adsorption and desorption temperatures, good cyclic stability in dry and humid conditions, high CO2 outlet purity and a high working capacity. Primary amine functionalized solid sorbents are found to often have good qualities for direct air capture, but overall process performance is rarely studied exhaustively. Based on FTIR spectra, both resin adsorbents are found to be consisted of polystyrene functionalized with primary amine, and capture CO2 by forming carbamate. The commercial resin is more porous, has a slightly higher particle size and contains fewer impurities. Important physical parameters are gained of the proprietary resin, such as internal porosity and median particle size. The resin’s amine group is found to endure thermal treatment reasonably well. CO2 adsorption capacity gained by thermal gravimetry from 400ppm CO2 is highest at 25oC, and is found to be reasonable compared to values presented in literature. Thus, the resin is stated to exhibit promising qualities for direct air capture.