21 resultados para complexity metrics
Resumo:
Technological innovations, the development of the internet, and globalization have increased the number and complexity of web applications. As a result, keeping web user interfaces understandable and usable (in terms of ease-of-use, effectiveness, and satisfaction) is a challenge. As part of this, designing userintuitive interface signs (i.e., the small elements of web user interface, e.g., navigational link, command buttons, icons, small images, thumbnails, etc.) is an issue for designers. Interface signs are key elements of web user interfaces because ‘interface signs’ act as a communication artefact to convey web content and system functionality, and because users interact with systems by means of interface signs. In the light of the above, applying semiotic (i.e., the study of signs) concepts on web interface signs will contribute to discover new and important perspectives on web user interface design and evaluation. The thesis mainly focuses on web interface signs and uses the theory of semiotic as a background theory. The underlying aim of this thesis is to provide valuable insights to design and evaluate web user interfaces from a semiotic perspective in order to improve overall web usability. The fundamental research question is formulated as What do practitioners and researchers need to be aware of from a semiotic perspective when designing or evaluating web user interfaces to improve web usability? From a methodological perspective, the thesis follows a design science research (DSR) approach. A systematic literature review and six empirical studies are carried out in this thesis. The empirical studies are carried out with a total of 74 participants in Finland. The steps of a design science research process are followed while the studies were designed and conducted; that includes (a) problem identification and motivation, (b) definition of objectives of a solution, (c) design and development, (d) demonstration, (e) evaluation, and (f) communication. The data is collected using observations in a usability testing lab, by analytical (expert) inspection, with questionnaires, and in structured and semi-structured interviews. User behaviour analysis, qualitative analysis and statistics are used to analyze the study data. The results are summarized as follows and have lead to the following contributions. Firstly, the results present the current status of semiotic research in UI design and evaluation and highlight the importance of considering semiotic concepts in UI design and evaluation. Secondly, the thesis explores interface sign ontologies (i.e., sets of concepts and skills that a user should know to interpret the meaning of interface signs) by providing a set of ontologies used to interpret the meaning of interface signs, and by providing a set of features related to ontology mapping in interpreting the meaning of interface signs. Thirdly, the thesis explores the value of integrating semiotic concepts in usability testing. Fourthly, the thesis proposes a semiotic framework (Semiotic Interface sign Design and Evaluation – SIDE) for interface sign design and evaluation in order to make them intuitive for end users and to improve web usability. The SIDE framework includes a set of determinants and attributes of user-intuitive interface signs, and a set of semiotic heuristics to design and evaluate interface signs. Finally, the thesis assesses (a) the quality of the SIDE framework in terms of performance metrics (e.g., thoroughness, validity, effectiveness, reliability, etc.) and (b) the contributions of the SIDE framework from the evaluators’ perspective.
Resumo:
In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.
Resumo:
The presentation consists of work-in-progress metrics of #digitalkoot, the crowdsourcing project launched by National Library of Finland
Resumo:
Sustainability issue of ICT have gathered attention in recent years, and researchers are working on this problem. Sustainability incorporates numerous interconnected aspects as well as methods to achieve it in ICT, so it is quite complicated to have a general view on a problem without a proper framework. However, a general methodology for such a research is missing. In this work it is proposed to use Biomimicry approach as a framework for sustainability research and development, as it introduces systematics and also forces to account sustainable aspects. Additionally, an interesting problem of green network measurements for enhancing sustainability in ICT will be researched using mentioned approach. The goal is to investigate Biomimicry as a systemic approach for developing sustainable systems, as well as to apply it in green network measurements study. Comparative study is performed for examining Biomimicry approach, as well as a use case of green network measurements research is presented. As a result, green network measurement can potentially improve sustainability, but only to a limited extent as it cannot incorporate all the aspects; within Biomimicry approach, two methodologies exist. It is possible to conclude that Biomimicry is a good framework for developing sustainable systems, nevertheless, another methodology has to be introduced within it; new methodology has to incorporate advantages of two existing ones.
Resumo:
In much of the previous research into the field of interactive storytelling, the focus has been on the creation of complete systems, then evaluating the performance of those systems based on user experience. Less focus has been placed on finding general solutions to problems that manifest in many different types of interactive storytelling systems. The goal of this thesis was to identify potential candidates for metrics that a system could use to predict player behavior or how players experience the story they are presented with, and to put these metrics to an empirical test. The three metrics that were used were morality, relationships and conflict. The game used for user testing of the metrics, Regicide is an interactive storytelling experience that was created in conjunction with Eero Itkonen. Data, in the forms of internal system data and survey answers, collected through user testing, was used to evaluate hypotheses for each metric. Out of the three chosen metrics, morality performed the best in this study. Though further research and refinement may be required, the results were promising, and point to the conclusion that user responses to questions of morality are a strong predictor for their choices in similar situations later on in the course of an interactive story. A similar examination for user relationships with other characters in the story did not produce promising results, but several problems were recognized in terms of methodology and further research with a better optimized system may yield different results. On the subject of conflict, several aspects, proposed by Ware et al. (2012), were evaluated separately. Results were inconclusive, with the aspect of directness showing the most promise.
Resumo:
Abstract Software product metrics aim at measuring the quality of software. Modu- larity is an essential factor in software quality. In this work, metrics related to modularity and especially cohesion of the modules, are considered. The existing metrics are evaluated, and several new alternatives are proposed. The idea of cohesion of modules is that a module or a class should consist of related parts. The closely related principle of coupling says that the relationships between modules should be minimized. First, internal cohesion metrics are considered. The relations that are internal to classes are shown to be useless for quality measurement. Second, we consider external relationships for cohesion. A detailed analysis using design patterns and refactorings confirms that external cohesion is a better quality indicator than internal. Third, motivated by the successes (and problems) of external cohesion metrics, another kind of metric is proposed that represents the quality of modularity of software. This metric can be applied to refactorings related to classes, resulting in a refactoring suggestion system. To describe the metrics formally, a notation for programs is developed. Because of the recursive nature of programming languages, the properties of programs are most compactly represented using grammars and formal lan- guages. Also the tools that were used for metrics calculation are described.