72 resultados para carbon neutral
Resumo:
Summary
Resumo:
Selostus: Hiilidioksidin kulku lumipeitteisessä ja paljaassa maassa
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Laktoosi eli maitosokeri on tärkein ainesosa useimpien nisäkkäiden tuottamassa maidossa. Sitä erotetaan herasta, juustosta ja maidosta. Laktoosia käytetään elintarvike- ja lääketeollisuuden raaka-aineena monissaeri tuotteissa. Lääketeollisuudessa laktoosia käytetään esimerkiksi tablettien täyteaineena. Hapettamalla laktoosia voidaan valmistaa laktobionihappoa, 2-keto-laktobionihappoa ja laktuloosia. Laktobionihappoa käytetään biohajoavien pintojen ja kosmetiikkatuotteiden valmistuksessa, sekä sisäelinten säilöntäliuoksissa, joissa laktobionihappo estää happiradikaalien aiheuttamien kudosvaurioiden syntymistä. Tässä työssä laktoosia hapetettiin laktobionihapoksi sekoittimella varustetussa laboratoriomittakaavaisessa panosreaktorissa käyttäenkatalyyttinä palladiumia aktiivihiilellä. Muutamissa kokeissa katalyytin promoottorina käytettiin vismuttia, joka hidastaa katalyytin deaktivoitumista. Työn tarkoituksena oli saada lisää tietoa laktoosin hapettamisen kinetiikasta. Laktoosin hapettumisessa laktobionihapoksi havaittiin selektiivisyyteen vaikuttavan muunmuassa reaktiolämpötila, paine, pH ja käytetyn katalyytin määrä. Katalyyttiä kierrättämällä eri kokeiden välillä saatiin paremmat konversiot, selektiivisyydet ja saannot. Parhaat koetulokset saatiin hapetettaessa synteettisellä ilmalla 60 oC lämpötilassa ja 1 bar paineessa. Tehdyissä kokeissa pH:n säätö tehtiin manuaalisesti, joten pH ei pysynyt koko ajan haluttuna. Laktoosin konversio oli parhaimmillaan 95 %. Laktobionihapon suhteellinen selektiivisyys oli 100% ja suhteellinen saanto 100 %. Kinetiikan matemaattinen mallinnus tehtiin Modest-ohjelmalla käyttäen kokeista saatuja mittaustuloksia.Ohjelman avulla estimoitiin parametreja ja saatiin matemaattinen malli reaktorille. Tässä työssä tehtiin kineettinen mallinnus myös ravistelureaktorissa tehdyille laktoosin hapetuskokeille, missä pH pysyi koko ajan haluttuna 'in-situ' titrauksen avulla. Työn yhteydessä selvitettiin myös mahdollisuutta käyttää monoliittikatalyyttejä laktoosin hapetusreaktiossa.
Resumo:
Kaasunkäyttö liikennepolttoaineena on Suomessa vielä melko vähäistä. Maa- ja biokaasun käyttöä pyritään kuitenkin lisäämään, sillä EU:n jäsenvaltioiden tulee korvatavuoteen 2010 mennessä 5,75 % nykyisistä liikenteen polttoaineista biopolttoaineilla ja vuoteen 2020 mennessä jopa 20 %:a. Tässä työssä tutkittiin kaasukäyttöisen (CNG) jäteauton vahvuuksia ja heikkouksia dieseljäteautoon verrattuna. Ensimmäinen CNG-jäteauto aloitti liikennöinnin Pääkaupunkiseudun yhteistyövaltuuskunnan alueella joulukuussa 2005. Kaasujäteautolle suoritettujen melu- ja pakokaasupäästömittausten perusteella selvisi, että CNG-jäteauto on ympäristön kannalta dieseljäteautoa puhtaampi vaihtoehto. Kaasujäteautolla on myös yrityksen imagoon positiivinen vaikutus. Jäteautojen kustannuslaskelmat osoittivat, että kaasujäteauto tulee kokonaiskustannuksiltaan kalliimmaksi kuin dieseljäteauto. Ainoastaan CNG-jäteauton polttoainekustannukset ovat toistaiseksi edullisemmat kuin dieseljäteauton. Kaasujäteautokannan lisääntyminen edellyttää kaasun liikennepolttoainekäytön tukemista esimerkiksi antamalla lisäpisteitä urakkatarjouskilpailuissa. Tällöin eri polttoainevaihtoehtojen välillesyntyy kilpailua, millä voi tulevaisuudessa olla vaikutusta CNG-jäteauton kokonaiskustannusten alenemiseen ja kaasun käytön lisäämiseen taloudellisesti kannattavasti. Myös edistämällä biokaasun hyötykäyttöä liikennepolttoaineena saavutetaan maakaasua paremmat ympäristöhyödyt ja saadaan kaatopaikoilla muodostuva metaani talteen. Biokaasu on hiilidioksidineutraali polttoaine, joten sen poltosta ei synny kasvihuonekaasupäästöjä.
Resumo:
Uusia keinoja kullan erottamiseksi malmista on etsitty viimeaikoina taloudellisista ja ympäristöllisistä syistä kautta maailman. Syanidointimenetelmä on hallinnut kullan talteenottoayli sata vuotta. Menetelmässä kulta liuotetaan laimeaan syanidiliuokseen, jostase otetaan talteen aktiivihiilen avulla. Syanidin käyttöä pyritään kuitenkin vähentämään sen myrkyllisyyden takia. Lisäksi nykyään louhitaan enenemässä määrin malmia, josta on hankala rikastaa kulta kustannustehokkaasti syanidia käyttäen. Kullan talteenottoa syanidi- ja kloridiliuoksesta on selvitetty kirjallisuuden avulla. Kullan kemiaan liuotuksen aikana on perehdytty ennen kullan talteenottoa aktiivihiilellä. Aktiivihiilen elinkaari kullan adsorbenttinaon käsitelty valmistuksesta hylkäämiseen mukaan lukien hiilen myrkyttyminen prosessissa ja regenerointi. Aktiivi-hiilen käyttäytyminen syanidi- ja kloridiliuoksessa on selvitetty erikseen. Kullan talteenottoa kuparipitoisista malmeista on käsitelty. Kullan talteenottoa kloridiliuoksesta aktiivihiiltä käyttäen on tutkittu kokeellisesti. Pääasialliset tutkimuskohteet ovat adsorption kinetiikka, kuparin vaikutus adsorptioon, aktiivihiilen vaikutus adsorptioonja adsorboituneiden metallien strippaus hiilestä selektiivisesti. Hapettavan stippauksen vaikutus kullan desorptioon hiilestä on tutkittu yksityiskohtaisesti. Kullan erotusmenetelmät kuparimalmista aktiivihiiltä käyttäen on selvitetty diplomityön tulosten pohjalta. Diplomityön keskeisten tulosten perusteella kulta ei välttämättä saostu aktiivihiilen pinnalle kloridiliuoksesta. Havainto varmistettiin ladattujen hiilipartikkelien pyyhkäisyelektronimikroskooppikuvista ja partikkeleille tehdyistä mikroanalyyseistä. Kullan pelkistyminen metalliseksi kullaksi aktiivihiilessä voitaneen välttää käyttämällä erittäin hapettavia olosuhteita. Aktiivihiili ilmeisesti hapettuu näissä olosuhteissa, mikä mahdollistaa kultakloridin adsorboitumisen hiileen.