20 resultados para browser plug-in
Resumo:
The condensation rate has to be high in the safety pressure suppression pool systems of Boiling Water Reactors (BWR) in order to fulfill their safety function. The phenomena due to such a high direct contact condensation (DCC) rate turn out to be very challenging to be analysed either with experiments or numerical simulations. In this thesis, the suppression pool experiments carried out in the POOLEX facility of Lappeenranta University of Technology were simulated. Two different condensation modes were modelled by using the 2-phase CFD codes NEPTUNE CFD and TransAT. The DCC models applied were the typical ones to be used for separated flows in channels, and their applicability to the rapidly condensing flow in the condensation pool context had not been tested earlier. A low Reynolds number case was the first to be simulated. The POOLEX experiment STB-31 was operated near the conditions between the ’quasi-steady oscillatory interface condensation’ mode and the ’condensation within the blowdown pipe’ mode. The condensation models of Lakehal et al. and Coste & Lavi´eville predicted the condensation rate quite accurately, while the other tested ones overestimated it. It was possible to get the direct phase change solution to settle near to the measured values, but a very high resolution of calculation grid was needed. Secondly, a high Reynolds number case corresponding to the ’chugging’ mode was simulated. The POOLEX experiment STB-28 was chosen, because various standard and highspeed video samples of bubbles were recorded during it. In order to extract numerical information from the video material, a pattern recognition procedure was programmed. The bubble size distributions and the frequencies of chugging were calculated with this procedure. With the statistical data of the bubble sizes and temporal data of the bubble/jet appearance, it was possible to compare the condensation rates between the experiment and the CFD simulations. In the chugging simulations, a spherically curvilinear calculation grid at the blowdown pipe exit improved the convergence and decreased the required cell count. The compressible flow solver with complete steam-tables was beneficial for the numerical success of the simulations. The Hughes-Duffey model and, to some extent, the Coste & Lavi´eville model produced realistic chugging behavior. The initial level of the steam/water interface was an important factor to determine the initiation of the chugging. If the interface was initialized with a water level high enough inside the blowdown pipe, the vigorous penetration of a water plug into the pool created a turbulent wake which invoked the chugging that was self-sustaining. A 3D simulation with a suitable DCC model produced qualitatively very realistic shapes of the chugging bubbles and jets. The comparative FFT analysis of the bubble size data and the pool bottom pressure data gave useful information to distinguish the eigenmodes of chugging, bubbling, and pool structure oscillations.
Resumo:
Computational fluid dynamics (CFD) modeling is an important tool in designing new combustion systems. By using CFD modeling, entire combustion systems can be modeled and the emissions and the performance can be predicted. CFD modeling can also be used to develop new and better combustion systems from an economical and environmental point of view. In CFD modeling of solid fuel combustion, the combustible fuel is generally treated as single fuel particles. One of the limitations with the CFD modeling concerns the sub-models describing the combustion of single fuel particles. Available models in the scientific literature are in many cases not suitable as submodels for CFD modeling since they depend on a large number of input parameters and are computationally heavy. In this thesis CFD-applicable models are developed for the combustion of single fuel particles. The single particle models can be used to improve the combustion performance in various combustion devices or develop completely new technologies. The investigated fields are oxidation of carbon (C) and nitrogen (N) in char residues from solid fuels. Modeled char-C oxidation rates are compared to experimental oxidation rates for a large number of pulverized solid fuel chars under relevant combustion conditions. The experiments have been performed in an isothermal plug flow reactor operating at 1123-1673 K and 3-15 vol.% O2. In the single particle model, the char oxidation is based on apparent kinetics and depends on three fuel specific parameters: apparent pre-exponential factor, apparent activation energy, and apparent reaction order. The single particle model can be incorporated as a sub-model into a CFD code. The results show that the modeled char oxidation rates are in good agreement with experimental char oxidation rates up to around 70% of burnout. Moreover, the results show that the activation energy and the reaction order can be assumed to be constant for a large number of bituminous coal chars under conditions limited by the combined effects of chemical kinetics and pore diffusion. Based on this, a new model based on only one fuel specific parameter is developed (Paper III). The results also show that reaction orders of bituminous coal chars and anthracite chars differ under similar conditions (Paper I and Paper II); reaction orders of bituminous coal chars were found to be one, while reaction orders of anthracite chars were determined to be zero. This difference in reaction orders has not previously been observed in the literature and should be considered in future char oxidation models. One of the most frequently used comprehensive char oxidation models could not explain the difference in the reaction orders. In the thesis (Paper II), a modification to the model is suggested in order to explain the difference in reaction orders between anthracite chars and bituminous coal chars. Two single particle models are also developed for the NO formation and reduction during the oxidation of single biomass char particles. In the models the char-N is assumed to be oxidized to NO and the NO is partly reduced inside the particle. The first model (Paper IV) is based on the concentration gradients of NO inside and outside the particle and the second model is simplified to such an extent that it is based on apparent kinetics and can be incorporated as a sub-model into a CFD code (Paper V). Modeled NO release rates from both models were in good agreement with experimental measurements from a single particle reactor of quartz glass operating at 1173-1323 K and 3-19 vol.% O2. In the future, the models can be used to reduce NO emissions in new combustion systems.
Resumo:
The Travel and Tourism field is undergoing changes due to the rapid development of information technology and digital services. Online travel has profoundly changed the way travel and tourism organizations interact with their customers. Mobile technology such as mobile services for pocket devices (e.g. mobile phones) has the potential to take this development even further. Nevertheless, many issues have been highlighted since the early days of mobile services development (e.g. the lack of relevance, ease of use of many services). However, the wide adoption of smartphones and the mobile Internet in many countries as well as the formation of so-called ecosystems between vendors of mobile technology indicate that many of these issues have been overcome. Also when looking at the numbers of downloaded applications related to travel in application stores like Google Play, it seems obvious that mobile travel and tourism services are adopted and used by many individuals. However, as business is expected to start booming in the mobile era, many issues have a tendency to be overlooked. Travelers are generally on the go and thus services that work effectively in mobile settings (e.g. during a trip) are essential. Hence, the individuals’ perceived drivers and barriers to use mobile travel and tourism services in on-site or during trip settings seem particularly valuable to understand; thus this is one primary aim of the thesis. We are, however, also interested in understanding different types of mobile travel service users. Individuals may indeed be very different in their propensity to adopt and use technology based innovations (services). Research is also switching more from investigating issues of mobile service development to understanding individuals’ usage patterns of mobile services. But designing new mobile services may be a complex matter from a service provider perspective. Hence, our secondary aim is to provide insights into drivers and barriers of mobile travel and tourism service development from a holistic business model perspective. To accomplish the research objectives seven different studies have been conducted over a time period from 2002 – 2013. The studies are founded on and contribute to theories within diffusion of innovations, technology acceptance, value creation, user experience and business model development. Several different research methods are utilized: surveys, field and laboratory experiments and action research. The findings suggest that a successful mobile travel and tourism service is a service which supports one or several mobile motives (needs) of individuals such as spontaneous needs, time-critical arrangements, efficiency ambitions, mobility related needs (location features) and entertainment needs. The service could be customized to support travelers’ style of traveling (e.g. organized travel or independent travel) and should be easy to use, especially easy to take into use (access, install and learn) during a trip, without causing security concerns and/or financial risks for the user. In fact, the findings suggest that the most prominent barrier to the use of mobile travel and tourism services during a trip is an individual’s perceived financial cost (entry costs and usage costs). It should, however, be noted that regulations are put in place in the EU regarding data roaming prices between European countries and national telecom operators are starting to see ‘international data subscriptions’ as a sales advantage (e.g. Finnish Sonera provides a data subscription in the Baltic and Nordic region at the same price as in Finland), which will enhance the adoption of mobile travel and tourism services also in international contexts. In order to speed up the adoption rate travel service providers could consider e.g. more local initiatives of free Wi-Fi networks, development of services that can be used, at least to some extent, in an offline mode (do not require costly network access during a trip) and cooperation with telecom operators (e.g. lower usage costs for travelers who use specific mobile services or travel with specific vendors). Furthermore, based on a developed framework for user experience of mobile trip arrangements, the results show that a well-designed mobile site and/or native application, which preferably supports integration with other mobile services, is a must for true mobile presence. In fact, travel service providers who want to build a relationship with their customers need to consider a downloadable native application, but in order to be found through the mobile channel and make contact with potential new customers, a mobile website should be available. Moreover, we have made a first attempt with cluster analysis to identify user categories of mobile services in a travel and tourism context. The following four categories were identified: info-seekers, checkers, bookers and all-rounders. For example “all-rounders”, represented primarily by individuals who use their pocket device for almost any of the investigated mobile travel services, constituted primarily of 23 to 50 year old males with high travel frequency and great online experience. The results also indicate that travel service providers will increasingly become multi-channel providers. To manage multiple online channels, closely integrated and hybrid online platforms for different devices, supporting all steps in a traveler process should be considered. It could be useful for travel service providers to focus more on developing browser-based mobile services (HTML5-solutions) than native applications that work only with specific operating systems and for specific devices. Based on an action research study and utilizing a holistic business model framework called STOF we found that HTML5 as an emerging platform, at least for now, has some limitations regarding the development of the user experience and monetizing the application. In fact, a native application store (e.g. Google Play) may be a key mediator in the adoption of mobile travel and tourism services both from a traveler and a service provider perspective. Moreover, it must be remembered that many device and mobile operating system developers want service providers to specifically create services for their platforms and see native applications as a strategic advantage to sell more devices of a certain kind. The mobile telecom industry has moved into a battle of ecosystems where device makers, developers of operating systems and service developers are to some extent forced to choose their development platforms.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
This thesis presents security issues and vulnerabilities in home and small office local area networks that can be used in cyber-attacks. There is previous research done on single vulnerabilities and attack vectors, but not many papers present full scale attack examples towards LAN. First this thesis categorizes different security threads and later in the paper methods to launch the attacks are shown by example. Offensive security and penetration testing is used as research methods in this thesis. As a result of this thesis an attack is conducted using vulnerabilities in WLAN, ARP protocol, browser as well as methods of social engineering. In the end reverse shell access is gained to the target machine. Ready-made tools are used in the attack and their inner workings are described. Prevention methods are presented towards the attacks in the end of the thesis.