35 resultados para automatic programming
Resumo:
This study presents an automatic, computer-aided analytical method called Comparison Structure Analysis (CSA), which can be applied to different dimensions of music. The aim of CSA is first and foremost practical: to produce dynamic and understandable representations of musical properties by evaluating the prevalence of a chosen musical data structure through a musical piece. Such a comparison structure may refer to a mathematical vector, a set, a matrix or another type of data structure and even a combination of data structures. CSA depends on an abstract systematic segmentation that allows for a statistical or mathematical survey of the data. To choose a comparison structure is to tune the apparatus to be sensitive to an exclusive set of musical properties. CSA settles somewhere between traditional music analysis and computer aided music information retrieval (MIR). Theoretically defined musical entities, such as pitch-class sets, set-classes and particular rhythm patterns are detected in compositions using pattern extraction and pattern comparison algorithms that are typical within the field of MIR. In principle, the idea of comparison structure analysis can be applied to any time-series type data and, in the music analytical context, to polyphonic as well as homophonic music. Tonal trends, set-class similarities, invertible counterpoints, voice-leading similarities, short-term modulations, rhythmic similarities and multiparametric changes in musical texture were studied. Since CSA allows for a highly accurate classification of compositions, its methods may be applicable to symbolic music information retrieval as well. The strength of CSA relies especially on the possibility to make comparisons between the observations concerning different musical parameters and to combine it with statistical and perhaps other music analytical methods. The results of CSA are dependent on the competence of the similarity measure. New similarity measures for tonal stability, rhythmic and set-class similarity measurements were proposed. The most advanced results were attained by employing the automated function generation – comparable with the so-called genetic programming – to search for an optimal model for set-class similarity measurements. However, the results of CSA seem to agree strongly, independent of the type of similarity function employed in the analysis.
Resumo:
In the modern warfare there is an active development of a new trend connected with a robotic warfare. One of the critical elements of robotics warfare systems is an automatic target recognition system, allowing to recognize objects, based on the data received from sensors. This work considers aspects of optical realization of such a system by means of NIR target scanning at fixed wavelengths. An algorithm was designed, an experimental setup was built and samples of various modern gear and apparel materials were tested. For pattern testing the samples of actively arm engaged armies camouflages were chosen. Tests were performed both in clear atmosphere and in the artificial extremely humid and hot atmosphere to simulate field conditions.
Resumo:
Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.
Resumo:
Western societies have been faced with the fact that overweight, impaired glucose regulation and elevated blood pressure are already prevalent in pediatric populations. This will inevitably mean an increase in later manifestations of cardio-metabolic diseases. The dilemma has been suggested to stem from fetal life and it is surmised that the early nutritional environment plays an important role in the process called programming. The aim of the present study was to characterize early nutritional determinants associating with cardio-metabolic risk factors in fetuses, infants and children. Further, the study was designated to establish whether dietary counseling initiated in early pregnancy can modify this cascade. Healthy mother-child pairs (n=256) participating in a dietary intervention study were followed from early pregnancy to childhood. The intervention included detailed dietary counseling by a nutritionist targeting saturated fat intake in excess of recommendations and fiber consumption below recommendations. Cardio-metabolic programming was studied by characterizing the offspring’s cardio-metabolic risk factors such as over-activation of the autonomic nervous system, elevated blood pressure and adverse metabolic status (e.g. serum high split proinsulin concentration). Fetal cardiac sympathovagal activation was measured during labor. Postnatally, children’s blood pressure was measured at six-month and four-year follow-up visits. Further, infants’ metabolic status was assessed by means of growth and serum biomarkers (32-33 split proinsulin, leptin and adiponectin) at the age of six months. This study proved that fetal cardiac sympathovagal activity was positively associated with maternal pre-pregnancy body mass index indicating adverse cardio-metabolic programming in the offspring. Further, a reduced risk of high split proinsulin in infancy and lower blood pressure in childhood were found in those offspring whose mothers’ weight gain and amount and type of fats in the diet during pregnancy were as recommended. Of note, maternal dietary counseling from early pregnancy onwards could ameliorate the offspring’s metabolic status by reducing the risk of high split proinsulin concentration, although it had no effect on the other cardio-metabolic markers in the offspring. At postnatal period breastfeeding proved to entail benefits in cardio-metabolic programming. Finally, the recommended dietary protein and total fat content in the child’s diet were important nutritional determinants reducing blood pressure at the age of four years. The intrauterine and immediate postnatal period comprise a window of opportunity for interventions aiming to reduce the risk of cardio-metabolic disorders and brings the prospect of achieving health benefits over one generation.
Resumo:
Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.
Resumo:
A district heating system comprises production facilities, a distribution network, and heat consumers. The utilization of new energy metering and reading system (AMR) is increasing constantly in district heating systems. This heuristic study shows how the AMR system can be exploited in finding optimization opportunities in district heating system. In this study, the district heating system is mainly considered from the viewpoint of operational optimization. The focus is on the core processes, heat production and distribution. Three objectives were set to this study. The first one was to examine general optimization opportunities in district heating systems. Second, to figure out the benefits of AMR for general optimization opportunities. Finally, to define a methodology for process improvement endeavors. This study shows, through a case study, the usefulness of AMR in specifying current deficiencies in a district heating system. Based on a literature review, the methodology for the improvement of business processes is presented. Additionally, some issues related to future competitiveness of district heating are concerned. As a conclusion, some optimization objectives are considered more desirable than others. Study shows that AMR is useful in the specification of optimization targets in the district heating system. Further steps in optimization process were not examined in detail. That would seem to be interesting topic for further studies.
Resumo:
In this thesis, simple methods have been sought to lower the teacher’s threshold to start to apply constructive alignment in instruction. From the phases of the instructional process, aspects that can be improved with little effort by the teacher have been identified. Teachers have been interviewed in order to find out what students actually learn in computer science courses. A quantitative analysis of the structured interviews showed that in addition to subject specific skills and knowledge, students learn many other skills that should be mentioned in the learning outcomes of the course. The students’ background, such as their prior knowledge, learning style and culture, affects how they learn in a course. A survey was conducted to map the learning styles of computer science students and to see if their cultural background affected their learning style. A statistical analysis of the data indicated that computer science students are different learners than engineering students in general and that there is a connection between the student’s culture and learning style. In this thesis, a simple self-assessment scale that is based on Bloom’s revised taxonomy has been developed. A statistical analysis of the test results indicates that in general the scale is quite reliable, but single students still slightly overestimate or under-estimate their knowledge levels. For students, being able to follow their own progress is motivating, and for a teacher, self-assessment results give information about how the class is proceeding and what the level of the students’ knowledge is.
Resumo:
Centrifugal pumps are a notable end-consumer of electrical energy. Typical application of a centrifugal pump is the filling or emptying of a reservoir tank, where the pump is often operated at a constant speed until the process is completed. Installing a frequency converter to control the motor substitutes the traditional fixed-speed pumping system, allows the optimization of rotational speed profile for the pumping tasks and enables the estimation of rotational speed and shaft torque of an induction motor without any additional measurements from the motor shaft. Utilization of variable-speed operation provides the possibility to decrease the overall energy consumption of the pumping task. The static head of the pumping process may change during the pumping task. In such systems, the minimum rotational speed changes during reservoir filling or emptying, and the minimum energy consumption can’t be achieved with a fixed rotational speed. This thesis presents embedded algorithms to automatically identify, optimize and monitor pumping processes between supply and destination reservoirs, and evaluates the changing static head –based optimization method.
Resumo:
The general trend towards increasing e ciency and energy density drives the industry to high-speed technologies. Active Magnetic Bearings (AMBs) are one of the technologies that allow contactless support of a rotating body. Theoretically, there are no limitations on the rotational speed. The absence of friction, low maintenance cost, micrometer precision, and programmable sti ness have made AMBs a viable choice for highdemanding applications. Along with the advances in power electronics, such as signi cantly improved reliability and cost, AMB systems have gained a wide adoption in the industry. The AMB system is a complex, open-loop unstable system with multiple inputs and outputs. For normal operation, such a system requires a feedback control. To meet the high demands for performance and robustness, model-based control techniques should be applied. These techniques require an accurate plant model description and uncertainty estimations. The advanced control methods require more e ort at the commissioning stage. In this work, a methodology is developed for an automatic commissioning of a subcritical, rigid gas blower machine. The commissioning process includes open-loop tuning of separate parts such as sensors and actuators. The next step is to apply a system identi cation procedure to obtain a model for the controller synthesis. Finally, a robust model-based controller is synthesized and experimentally evaluated in the full operating range of the system. The commissioning procedure is developed by applying only the system components available and a priori knowledge without any additional hardware. Thus, the work provides an intelligent system with a self-diagnostics feature and an automatic commissioning.
Resumo:
Ride comfort of elevators is one of the quality criteria valued by customers. The objective of this master’s thesis was to develop a process to measure the ride comfort of automatic elevator doors. The door’s operational noise was chosen as a focus area and other kinds of noise for example caused by pressure differences in the elevator shaft were excluded. The thesis includes a theory part and an empirical part. In the first part theories of quality management, measuring of quality and acoustics are presented. In the empirical part the developed ride comfort measuring process is presented, different operational noise sources are analyzed and an example is presented of how this measuring process can be used to guide product development. To measure ride comfort a process was developed where a two-room silent room was used as a measuring environment and EVA-625 device was used in the actual measuring of door noise. A-weighted decibels were used to scale noise pressure levels and the door movement was monitored with an accelerometer. This enabled the connection between the noise and noise sources which in turn helped to find potential ride comfort improvement ideas. The noise isolation class was also measured with the Ivie-measuring system. Measuring of door ride comfort gives feedback to product development and to managing current product portfolio. Measuring enables the continuous improvement of elevator door ride comfort. The measuring results can also be used to back up marketing arguments for doors.
Resumo:
Työn tavoitteena on sovittaa Qt opetussuunnitelmaan. Työ sisältää Qt:n lyhyen historian sekä katsauksen sen nykytilaan. Nykytilakatsaus sisältää kolme näkökulmaa: miten ja missä Qt:ta voidaan käyttää, sekä sen käyttötarkoitukset teollisuudessa ja opetuksessa. Työn tuloksena syntyy luentodemonstraatiota varten pieni ohjelma, joka on luotu C++:n ja Qt Designerin avulla ja käyttää olennaisia käyttöliittymäkirjaston olioita. Toisena tuotteena työssä syntyy luonnos Lappeenrannan Teknillisen Yliopiston ohjelmointikursseista, joissa Qt:ta voitaisiin käyttää avustamaan opiskelijoita näkemään, miten graafinen ohjelma luodaan sekä valmentaa heitä ymmärtämään viitekehyksien ja graafisten kirjastojen tuomat edut.
Resumo:
Software plays an important role in our society and economy. Software development is an intricate process, and it comprises many different tasks: gathering requirements, designing new solutions that fulfill these requirements, as well as implementing these designs using a programming language into a working system. As a consequence, the development of high quality software is a core problem in software engineering. This thesis focuses on the validation of software designs. The issue of the analysis of designs is of great importance, since errors originating from designs may appear in the final system. It is considered economical to rectify the problems as early in the software development process as possible. Practitioners often create and visualize designs using modeling languages, one of the more popular being the Uni ed Modeling Language (UML). The analysis of the designs can be done manually, but in case of large systems, the need of mechanisms that automatically analyze these designs arises. In this thesis, we propose an automatic approach to analyze UML based designs using logic reasoners. This approach firstly proposes the translations of the UML based designs into a language understandable by reasoners in the form of logic facts, and secondly shows how to use the logic reasoners to infer the logical consequences of these logic facts. We have implemented the proposed translations in the form of a tool that can be used with any standard compliant UML modeling tool. Moreover, we authenticate the proposed approach by automatically validating hundreds of UML based designs that consist of thousands of model elements available in an online model repository. The proposed approach is limited in scope, but is fully automatic and does not require any expertise of logic languages from the user. We exemplify the proposed approach with two applications, which include the validation of domain specific languages and the validation of web service interfaces.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
This thesis researches automatic traffic sign inventory and condition analysis using machine vision and pattern recognition methods. Automatic traffic sign inventory and condition analysis can be used to more efficient road maintenance, improving the maintenance processes, and to enable intelligent driving systems. Automatic traffic sign detection and classification has been researched before from the viewpoint of self-driving vehicles, driver assistance systems, and the use of signs in mapping services. Machine vision based inventory of traffic signs consists of detection, classification, localization, and condition analysis of traffic signs. The produced machine vision system performance is estimated with three datasets, from which two of have been been collected for this thesis. Based on the experiments almost all traffic signs can be detected, classified, and located and their condition analysed. In future, the inventory system performance has to be verified in challenging conditions and the system has to be pilot tested.
Resumo:
The state of the object-oriented programming course in Lappeenranta University of Technology had reached the point, where it required changes to provide better learning opportunities and thus the learning outcomes. Based on the student feedback the course was partially dated and ineffective. The components of the course were analysed and the ineffective elements were removed and new methods were introduced to improve the course. The major changes included the change from traditional teaching methods to reverse classroom method and the use of Java as the programming language. The changes were measured by the student feedback, lecturer’s observations and comparison to previous years. The feedback suggested that the changes were successful; the course received higher overall grade than before.