19 resultados para autoimmune thyroiditis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system that affects most commonly young women in their childbearing age. Previous studies have shown that MS relapse rate usually reduces during pregnancy and increases again after delivery. Patients with MS and their treating physicians are interested to know more about the risks the disease can cause to pregnancy and how pregnancy affects the disease. The reasons for increased relapse rate after delivery are not entirely clear, but loss of pregnancy related immune tolerance and changes in the hormonal status at the time of delivery seem to be of relevance. Aims and methods: The aims of this study were to follow the natural course of MS during and after pregnancy, evaluate pregnancy related risks among MS patients, follow the inflammatory response of MS patients during and after pregnancy and clarify the risk of relevant co-morbidities known to affect other autoimmune diseases after pregnancy and compare these results to healthy controls. This study was a part of a prospective nation-wide follow-up study of 60 Finnish MS patients. All eligible MS patients were enrolled in the study during the years 2003-2005. A prospective followup continued from early pregnancy until six months postpartum. MS relapses, EDSS scores and obstetric details were recorded. Blood samples were obtained from the patients at early, middle, and late pregnancy, after delivery and one month, three months and six months postpartum. Results: MS patients were no more likely to experience pregnancy or delivery complications than the Finnish mothers in general. The need of instrumental assistance, however, was higher among mothers with MS. Disease activity followed the course seen in previous studies. The majority of mothers (90.2%) breastfed their babies. Contrary to previous results, breastfeeding did not protect MS patients from disease worsening after delivery in present study. Mothers with active pre-pregnancy disease chose to breastfeed less frequently and started medication instead. MS patients presented with higher prevalence of elevated thyroid autoantibodies postpartum than healthy controls, but the rate of thyroid hormonal dysfunction was similar as that of healthy controls. The mode of delivery nor the higher rate of tissue damage assessed with C-reactive protein concentration were not predictive of postpartum relapses. The prevalence of gestational diabetes was slightly higher among mothers with MS compared to Finnish mothers in general, but postpartum depression was observed in similar rates. MS patients presented with significantly lower serum concentrations of vitamin D during pregnancy and postpartum than healthy controls. Conclusions: Childbearing can be regarded as safe for mothers with MS as it is for healthy mothers in general. Breastfeeding can be recommended, but it should be done only after careful evaluation of the individual risk for postpartum disease activation. Considering MS patients tend to develop thyroid antibody positivity after delivery more often than healthy controls and that certain treatments can predispose MS patients to thyroid hormonal dysfunction, we recommend MS mothers to be screened for thyroid abnormalities during pregnancy and after delivery. Increased risk for gestational diabetes should be kept in mind when following MS mothers and glucose tolerance test in early pregnancy should be considered. Adequate vitamin D supplementation is essential for MS mothers also during pregnancy and postpartum period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The balance of T helper (Th) cell differentiation is the fundamental process that ensures that the immune system functions correctly and effectively. The differentiation is a fine tuned event, the outcome of which is driven by activation of the T-cell in response to recognition of the specific antigen presented. The co-stimulatory signals from the surrounding cytokine milieu help to determine the outcome. An impairment in the differentiation processes may lead to an imbalance in immune responses and lead to immune-mediated pathologies. An over-representation of Th1 type cytokine producing cells leads to tissue-specific inflammation and autoimmunity, and excessive Th2 response is causative for atopy, asthma and allergy. The major factors of Th-cell differentiation and in the related disease mechanisms have been extensively studied, but the fine tuning of these processes by the other factors cannot be discarded. In the work presented in this thesis, the association of T-cell receptor costimulatory molecules CTLA4 and ICOS with autoimmune diabetes were studied. The underlying aspect of the study was to explore the polymorphism in these genes with the different disease rates observed in two geographically close populations. The main focus of this thesis was set on a GTPase of the immunity associated protein (GIMAP) family of small GTPases. GIMAP genes and proteins are differentially regulated during human Th-cell differentiation and have been linked to immune-mediated disorders. GIMAP4 is believed to contribute to the immunological balance via its role in T-cell survival. To elucidate the function of GIMAP4 and GIMAP5 and their role in human immunity, a study combining genetic association in different immunological diseases and complementing functional analyses was conducted. The study revealed interesting connections with the high susceptibility risk genes. In addition, the role of GIMAP4 during Th1-cell differentiation was investigated. A novel function of GIMAP4 in relation to cytokine secretion was discovered. Further assessment of GIMAP4 and GIMAP5 effect for the transcriptomic profile of differentiating Th1-cells revealed new insights for GIMAP4 and GIMAP5 function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The immune response and immune suppression are equally essential for the immune system to protect the host against an infection and to protect self-molecules in different pathophysiological conditions. Pregnancy is one of the conditions where the maternal immune system remains resistant against microbes and yet attains tolerance to protect the fetus, whose genetic material differs partially from the mother’s. However, if the balance of immune suppression is not precise in the host it can favor conditions which lead to diseases, such as cancer and autoimmune disorders. This study was initiated to investigate the expression and functions of CLEVER-1/Stabilin-1, a multifunctional protein expressed on subsets of endothelial cells and type II macrophages, as an immune suppressive molecule. Firstly, the expression of CLEVER-1/stabilin-1 and its function in human placental macrophages were examined. Secondly, the expression profile and functional significance of stabilin-1 on healthy human monocytes was investigated. The results clarified the expression of CLEVER-1/stabilin-1 on placental macrophages, and verified that CLEVER-1/stabilin-1 functions as an adhesion and scavenging molecule on these cells. The data from normal monocytes revealed that the monocytes with low stabilin-1 expression carried a pro-inflammatory gene signature, and that stabilin-1 can directly or indirectly regulate pro-inflammatory genes in monocytes. Finally, it was shown that monocyte CLEVER-1/stabilin-1 dampens IFN production by T cells. To conclude, CLEVER-1/stabilin-1 is defined as an immune suppressive molecule on monocytes and macrophages. Strikingly, anti-stabilin-1 antibodies may have the potential to promote the Th1 dependent inflammatory response and counteract the tumor induced immune suppression.