35 resultados para air incorporation
Resumo:
Soitinnus: sooloääni. Simananniemen käsikirjoituskokoelma.
Resumo:
The thesis examined service offering development of an air freight carrier from the customers' point of view. The study was limited to the biggest business clients of the carrier. Service offering development can be divided into service concept, process and system. The thesis was based on these three themes and quality. Compared to product development, systematic and well-structured service development has been studied little, especially in business market. However, service development is a current issue. Due to growing competition companies should carefully listen to their clients' needs and respond to them by offering right services. Methodology of the thesis is qualitative and representatives of three forwarding companies were interviewed. It was found out that the forwarding companies consider themselves as partners of the airline. In addition to general reliability, the customers value the most fluent terminal processes and electronic communication.
Resumo:
Energy consumption and energy efficiency have become an issue. Energy consumption is rising all over the world and because of that, and the climate change, energy is becoming more and more expensive. Buildings are major consumers of energy, and inside the buildings the major consumers are heating, ventilation and air-conditioning systems. They usually run at constant speed without efficient control. In most cases HVAC equipment is also oversized. Traditionally heating, ventilation and air-conditioning systems have been sized to meet conditions that rarely occur. The theory part in this thesis represents the basics of life cycle costs and calculations for the whole life cycle of a system. It also represents HVAC systems, equipment, systems controls and ways to save energy in these systems. The empirical part of this thesis represents life cycle cost calculations for HVAC systems. With these calculations it is possible to compute costs for the whole life cycle for the wanted variables. Life cycle costs make it possible to compare which variable causes most of the costs from the whole life point of view. Life cycle costs were studied through two real life cases which were focused on two different kinds of HVAC systems. In both of these cases the renovations were already made, so that the comparison between the old and the new, now existing system would be easier. The study indicates that energy can be saved in HVAC systems by using variable speed drive as a control method.
Resumo:
Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry places tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R245fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors.
Resumo:
Oopperasta Faust.
Resumo:
Energy efficiency is one of the major objectives which should be achieved in order to implement the limited energy resources of the world in a sustainable way. Since radiative heat transfer is the dominant heat transfer mechanism in most of fossil fuel combustion systems, more accurate insight and models may cause improvement in the energy efficiency of the new designed combustion systems. The radiative properties of combustion gases are highly wavelength dependent. Better models for calculating the radiative properties of combustion gases are highly required in the modeling of large scale industrial combustion systems. With detailed knowledge of spectral radiative properties of gases, the modeling of combustion processes in the different applications can be more accurate. In order to propose a new method for effective non gray modeling of radiative heat transfer in combustion systems, different models for the spectral properties of gases including SNBM, EWBM, and WSGGM have been studied in this research. Using this detailed analysis of different approaches, the thesis presents new methods for gray and non gray radiative heat transfer modeling in homogeneous and inhomogeneous H2O–CO2 mixtures at atmospheric pressure. The proposed method is able to support the modeling of a wide range of combustion systems including the oxy-fired combustion scenario. The new methods are based on implementing some pre-obtained correlations for the total emissivity and band absorption coefficient of H2O–CO2 mixtures in different temperatures, gas compositions, and optical path lengths. They can be easily used within any commercial CFD software for radiative heat transfer modeling resulting in more accurate, simple, and fast calculations. The new methods were successfully used in CFD modeling by applying them to industrial scale backpass channel under oxy-fired conditions. The developed approaches are more accurate compared with other methods; moreover, they can provide complete explanation and detailed analysis of the radiation heat transfer in different systems under different combustion conditions. The methods were verified by applying them to some benchmarks, and they showed a good level of accuracy and computational speed compared to other methods. Furthermore, the implementation of the suggested banded approach in CFD software is very easy and straightforward.
Resumo:
kuv., 14 x 22 cm
Resumo:
kuv., 14 x 22 cm
Resumo:
Tutkimuksessa tarkastellaan air policingia turvallisuuspoliittisena kysymyksenä Suomessa, Islannin ilmavalvontahankkeen kautta. Tavoitteena oli selvittää Islannin ilmavalvonnasta käydyn julkisen keskustelun perusteella, miten air policing näyttäytyy Suomen turvallisuuspolitiikassa. Air policingilla tarkoitetaan vieraan suvereenin valtion ilmatilan koskemattomuuden valvontaa ja turvaamista rauhan aikana. Suomen turvallisuuspolitiikassa air policing on aiemmin käyttämätön työväline. Tutkimuksessa analysoitiin Suomessa käytyä julkista keskustelua Islannin ilmavalvonnasta. Keskustelua tutkittiin puolustusvoimien lakisääteisten tehtävien ja Suomen sotilaallisen liittoutumattomuuden näkökulmista. Tarkastelujen perusteella tehtiin johtopäätöksiä air policingista Suomen turvallisuuspoliittisena kysymyksenä. Tutkimuksen aineisto koostui Islannin ilmavalvontaa käsittelevistä Helsingin Sanomien, Uuden Suomen, Kylkiraudan ja Sotilasaikakauslehden kirjoituksista, eduskunnan täysistuntojen pöytäkirjoista sekä keskeisten turvallisuuspoliittisten päättäjien lausunnoista. Tarkasteltava ajanjakso oli vuoden 2009 alusta vuoden 2012 loppuun. Tutkimusmenetelmä oli sisällönanalyysi. Islannin ilmavalvonnasta käyty julkinen keskustelu koostui lyhyestä jaksosta vuonna 2009 sekä vilkkaasta ja laaja-alaisesta keskustelusta vuonna 2012. Tärkeimpiä sisältöteemoja olivat Nato ja Suomen liittoutumattomuus sekä pohjoismainen yhteistyö. Keskustelussa muodostui vastakkainasettelu, jossa toinen mielipide kannatti ja toinen vastusti Suomen osallistumista Islannin ilmavalvontaan. Puolustusvoimien lakisääteisiä tehtäviä käsiteltiin julkisuudessa vähän. Sen sijaan Suomen sotilaallinen liittoutumattomuus oli keskustelun ytimessä. Islannin ilmavalvontahankkeen kriitikot katsoivat osallistumisen vaarantavan Suomen liittoutumattomuuden Islannin Nato-jäsenyyden vuoksi. Hankkeen kannattajat perustelivat osallistumisen olevan osan tiivistyvää pohjoismaista puolustusyhteistyötä. Suomen ylin turvallisuuspoliittinen johto on ollut valmis ottamaan käyttöön air policingin Islannin ilmavalvontahankkeen yhteydessä. Kysymys on osoittautunut poliittisesti vaikeaksi, eikä konsensusta ole saavutettu. Maaliskuussa 2013 näyttää siltä, että mahdollinen osallistuminen Islannin ilmavalvontaan toteutuu harjoitusmuotoisena, jolloin siinä ei ole kyse varsinaisesta air policingista.
Resumo:
Waste has been incinerated for energy utilization for more than a hundred years, but the harmful emissions emitted from the incineration plants did not begin to cause concern until the 1980s. Many plants were shutdown and the waste incineration plant in Kyläsaari Helsinki was one of them. In later years, new landfill regulations have increased the interest in waste incineration. During the last year, four new plants were taken into operation in Finland, Westenergy in Vaasa among them. The presence of dust has been observed indoors at Westenergy waste incineration plant. Dust is defined as particles with a diameter above 10 μm, while fine particles have a diameter smaller than 2.5 μm, ultrafine under 0.1 μm and nanoparticles under 0.05 μm. In recent years, the focus of particle health research has been changed to investigate smaller particles. Ultrafine particles have been found to be more detrimental to health than larger particles. Limit values regulating the concentrations of ultrafine particles have not been determined yet. The objective of this thesis was to investigate dust and particles present inside the Westenergy waste incineration facility. The task was to investigate the potential pollutant sources and to give recommendations of how to minimize the presence of dust and particles in the power plant. The total particle number concentrations and size distributions where measured at 15 points inside the plant with an Engine Exhaust Particle Sizer (EEPS) Spectrometer. The measured particles were mainly in the ultrafine size range. Dust was only visually investigated, since the main purpose was to follow the dust accumulation. The measurement points inside the incineration plant were chosen according to investigate exposure to visitors and workers. At some points probable leakage of emissions were investigated. The measurements were carried out during approximately one month in March–April 2013. The results of the measurements showed that elevated levels of dust and particles are present in the indoor air at the waste incineration plant. The cleanest air was found in the control room, warehouse and office. The most polluted air was near the sources that were investigated due to possible leakage and in the bottom ash hall. However, the concentrations were near measured background concentrations in European cities and no leakage could be detected. The high concentrations were assumed to be a result of a lot of dust and particles present on surfaces that had not been cleaned in a while. The main source of the dust and particles present inside the waste incineration plant was thought to be particles and dust from the outside air. Other activities in the area around the waste incineration facility are ground work activities, stone crushing and traffic, which probably are sources of particle formation. Filtration of the outside air prior entering the facility would probably save personnel and visitors from nuisance and save in cleaning and maintenance costs.
Resumo:
Soitinnus: lauluääni (sopraano), piano.
Resumo:
The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.