18 resultados para aerial parts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s global industrial service business, markets are dynamic and finding new ways of value creation towards customers has become more and more challenging. Customer orientation is needed because of the demanding after-sales business which is both quickly changing and stochastic in nature. In after-sales business customers require fast and reliable service for their spare part needs. This thesis objective is to clarify this challenging after-sales business environment and find ways to increase customer satisfaction via balanced measurement system which will help to find possible targets to reduce order cycle times in a large metal and mineral company Outotec (Filters)’ Spare Part Supply business line. In case study, internal documents and data and numerical calculations together with qualitative interviews with different persons in key roles of Spare Part Supply organizations are used to analyze the performance of different processes from the spare parts delivery function. The chosen performance measurement tool is Balanced Scorecard which is slightly modified to suit the lead time study from customer’s perspective better. Findings show that many different processes in spare parts supply are facing different kind of challenges in achieving the lead time levels wanted and that these processes’ problems seem to accumulate. Findings also show that putting effort in supply side challenges and information flows visibility should give the best results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Additive manufacturing is a fast growing manufacturing technology capable of producing complex objects without the need for conventional manufacturing process planning. During the process the work piece is built by adding material one layer at a time according to a digital 3D CAD model. At first additive manufacturing was mainly used to make prototypes but the development of the technology has made it possible to also make final products. Welding is the most common joining method for metallic materials. As the maximum part size of additive manufacturing is often limited, it may sometimes be required to join two or more additively manufactured parts together. However there has been almost no research on the welding of additively manufactured parts so far, which means that there has been very little information available on the possible differences compared to the welding of sheet metal parts. The aim of this study was to compare the weld joint properties of additively manufactured parts to those of sheet metal parts. The welding process that was used was TIG welding and the test material was 316L austenitic stainless steel. Weld joint properties were studied by making tensile, bend and hardness tests and by studying the weld microstructures with a microscope. Results show that there are certain characteristics in the welds of additively manufactured parts. The building direction of the test pieces has some impact on the mechanical properties of the weld. Nevertheless all the welds exhibited higher yield strength than the sheet metal welds but at the same time elongation at break was lower. It was concluded that TIG welding is a feasible process for welding additively manufactured parts.