104 resultados para Welding laser
Resumo:
The mechanical properties of aluminium alloys are strongly influenced by the alloying elements and their concentration. In the case of aluminium alloy EN AW-6060 the main alloying elements are magnesium and silicon. The first goal of this thesis was to determine stability, repeatability and sensitivity as figures of merit of the in-situ melt identification technique. In this study the emissions from the laser welding process were monitored with a spectrometer. With the information produced by the spectrometer, quantitative analysis was conducted to determine the figures of merit. The quantitative analysis concentrated on magnesium and aluminium emissions and their relation. The results showed that the stability of absolute intensities was low, but the normalized magnesium emissions were quite stable. The repeatability of monitoring magnesium emissions was high (about 90 %). Sensitivity of the in-situ melt identification technique was also high. As small as 0.5 % change in magnesium content was detected by the spectrometer. The second goal of this study was to determine the loss of mass during deep penetration laser welding. The amount of magnesium in the material was measured before and after laser welding to determine the loss of magnesium. This study was conducted for aluminium alloy with nominal magnesium content of 0-10 % and for standard material EN AW-6060 that was welded with filler wire AlMg5. It was found that while the magnesium concentration in the material changed, the loss of magnesium remained fairly even. Also by feeding filler wire, the behaviour was similar. Thirdly, the reason why silicon had not been detected in the emission spectrum needed to be explained. Literature research showed that the amount of energy required for silicon to excite is considerably higher compared to magnesium. The energy input in the used welding process is insufficient to excite the silicon atoms.
Resumo:
Joining processes and techniques need to meet the trend of new applications and the development of new materials. The application in connection with thick and thin plates in industrial fields is wide and the joining technology is in very urgent need. The laser-TIG hybrid welding technology can play the respective advantages of both of them. One major advantage of the hybrid laser-TIG welding technology is its efficient use of laser energy. Additionally, it can develop into a high and new advanced welding technology and become a hot spot in both the application and research area. This thesis investigated laser –TIG hybrid welding with the aim of enlightening the reader on its advantages, disadvantages and future areas of improvement. The main objective is to investigate laser-TIG hybrid on the welding of various metals (steels, magnesium, aluminium etc.). In addition, it elaborates on various possible combinations on hybrid laser-TIG welding technology and their benefits. The possibility of using laser-TIG hybrid in welding of thick materials was investigated. The method applied in carrying out this research is by using literature review. The results showed that hybrid laser-TIG is applicable to almost all weldable metals. Also it proves to be effective in welding refractive metals. The possibility of welding with or without filler materials is of economic advantage especially in welding of materials with no filler material. Thick plate’s hybrid laser-TIG welding is showing great prospects although it normally finds its used in welding thin materials in the range of 0.4 to 0.8 mm. The findings show that laser-TIG hybrid welding can be a versatile welding process and therefore will be increasingly used industrially due to its numerous advantages and the development of new TIG arc that enhances its capabilities.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
Gas shielding plays an important role in laser welding phenomena. This is because it does not only provide shielding against oxidization but it has an effect in beam absorption and thus welds penetration. The goal of this thesis is to study and compare the effects of different shielding gas feeding methods in laser welding of steel. Research method is a literature survey. It is found that the inclination angle and the arrangement of the gas feeding nozzles affect the phenomena significantly. It is suggested that by designing shielding gas feeding case specifically better welding results can be obtained.
Resumo:
Keyhole welding, meaning that the laser beam forms a vapour cavity inside the steel, is one of the two types of laser welding processes and currently it is used in few industrial applications. Modern high power solid state lasers are becoming more used generally, but not all process fundamentals and phenomena of the process are well known and understanding of these helps to improve quality of final products. This study concentrates on the process fundamentals and the behaviour of the keyhole welding process by the means of real time high speed x-ray videography. One of the problem areas in laser welding has been mixing of the filler wire into the weld; the phenomena are explained and also one possible solution for this problem is presented in this study. The argument of this thesis is that the keyhole laser welding process has three keyhole modes that behave differently. These modes are trap, cylinder and kaleidoscope. Two of these have sub-modes, in which the keyhole behaves similarly but the molten pool changes behaviour and geometry of the resulting weld is different. X-ray videography was used to visualize the actual keyhole side view profile during the welding process. Several methods were applied to analyse and compile high speed x-ray video data to achieve a clearer image of the keyhole side view. Averaging was used to measure the keyhole side view outline, which was used to reconstruct a 3D-model of the actual keyhole. This 3D-model was taken as basis for calculation of the vapour volume inside of the keyhole for each laser parameter combination and joint geometry. Four different joint geometries were tested, partial penetration bead on plate and I-butt joint and full penetration bead on plate and I-butt joint. The comparison was performed with selected pairs and also compared all combinations together.
Resumo:
In this thesis the effect of focal point parameters in fiber laser welding of structural steel is studied. The goal is to establish relations between laser power, focal point diameter and focal point position with the resulting quality, weld-bead geometry and hardness of the welds. In the laboratory experiments, AB AH36 shipbuilding steel was welded in an I-butt joint configuration using IPG YLS-10000 continuous wave fiber laser. The quality of the welds produced were evaluated based on standard SFS-EN ISO 13919-1. The weld-bead geometry was defined from the weld cross-sections and Vickers hardness test was used to measure hardness's from the middle of the cross-sections. It was shown that all the studied focal point parameters have an effect on the quality, weld-bead geometry and hardness of the welds produced.
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
Perinteisten kaarihitsausmenetelmien suhteellisen suuri lämmöntuonti aiheuttaa huomattavia muodonmuutoksia laivan rungon valmistusprosessin alkuvaiheessa. Muodonmuutosten seurauksena rakenteiden mitta- ja muototarkkuus heikkenee, mikä lisää oikaisu- ja sovitustyötä myöhemmissä työvaiheissa. Hitsausmuodonmuutoksia voidaan vähentää siirtymällä käyttämään laser-MAG-hybridihitsausta, jossa lämmöntuonti on merkittävästi pienempi kuin kaarihitsauksessa. Näin kyetään oleellisesti leikkaamaan oikaisu- ja sovitustyöstä syntyviä kustannuksia. Tämän diplomityön tavoitteena oli kehittää tuotantovalmiiksi kuitulaser- ja MAG-hitsauksen yhdistelmäprosessi Aker Yards Oy:n Turun telakalla loppuvuoden 2006 aikana. Hitsauslaitteiston asennus oli valmistunut kesäkuussa 2006, minkä jälkeen aloitettiin luokituslaitoksen hyväksymän koeohjelman hitsaukset. Käyttöönotto suunnitelmaan sisältyvä koehitsausohjelma oli laadittu Det Norske Veritaksen julkaisemaa ohjetta (Guidelines no. 19) mukaillen. Ensimmäiseksi määritettiin hitsauskokeiden avulla prosessille laadun ja tehokkuuden suhteen optimaalinen railogeometria. Seuraavaksi optimoitiin prosessin hitsausparametrit 6 mm:n aineenpaksuudelle hyödyntäen Taguchi-koesuunnittelumenetelmää. Tämän jälkeen optimiparametreilla hitsattiin koekappale väsytyskokeisiin, jotka suoritettiin Teknillisen korkeakoulun laivalaboratoriossa. Väsytyskoetulokset täyttivät luokituslaitoksen vaatimukset. Myös hitsauksen menetelmäkoe suoritettiin hyväksytetysti. Viimeinen koeohjelman mukainen hitsauskoesarja tehtiin prosessiparametrien sallittujen vaihtelurajojen määrittämiseksi. Diplomityön tavoite täyttyi joulukuussa 2006, jolloin 'laivan kansipaneeli hitsattiin ensimmäistä kertaa uudella hitsausprosessilla. Hitsauksen laatu korreloi hyvin menetelmäkokeen tulosten kanssa ¿ hitsit olivat tasalaatuisia ja ne täyttivät B-luokan vaatimukset.
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Resumo:
The aim of the study was to create an easily upgradable product costing model for laser welded hollow core steel panels to help in pricing decisions. The theory section includes a literature review to identify traditional and modern cost accounting methodologies, which are used by manufacturing companies. The theory section also presents the basics of steel panel structures and their manufacturing methods and manufacturing costs based on previous research. Activity-Based costing turned out to be the most appropriate methodology for the costing model because of wide product variations. Activity analysis and the determination of cost drivers based on observations and interviews were the key steps in the creation of the model. The created model was used to test how panel parameters affect the costs caused by the main manufacturing stages and materials. By comparing cost structures, it was possible to find the panel types that are the most economic and uneconomic to manufacture. A sensitivity analysis proved that the model gives sufficiently reliable cost information to support pricing decisions. More reliable cost information could be achieved by determining the cost drivers more accurately. Alternative methods for manufacturing the cores were compared with the model. The comparison proved that roll forming can be more advantageous and flexible than press brake bending. However, more extensive research showed that roll forming is possible only when the cores are designed to be manufactured by roll forming. Due to that fact, when new panels are designed consideration should be given to the possibility of using roll forming.
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
Metal industries producing thick sections have shown increasing interest in the laser–arc hybrid welding process because of its clear advantages compared with the individual processes of autogenous laser welding and arc welding. One major benefit of laser–arc hybrid welding is that joints with larger gaps can be welded with acceptable quality compared to autogenous laser welding. The laser-arc hybrid welding process has good potential to extend the field of applications of laser technology, and provide significant improvements in weld quality and process efficiency in manufacturing applications. The objective of this research is to present a parameter set-up for laser–arc hybrid welding processes, introduce a methodical comparison of the chosen parameters, and discuss how this technology may be adopted in industrial applications. The research describes the principles, means and applications of different types of laser–arc hybrid welding processes. Conducted experiment processing variables are presented and compared using an analytical model which can also be used for predictive simulations. The main argument in this thesis is that profound understanding of the advanced technology of laser-arc hybrid welding will help improve the productivity of welding in industrial applications. Based on a review of the current knowledge base, important areas for further research are also identified. This thesis consists of two parts. The first part introduces the research topic and discusses laser–arc hybrid welding by characterizing its mechanism and most important variables. The second part comprises four research papers elaborating on the performance of laser– arc hybrid welding in the joining of metals. The study uses quantitative and qualitative research methods which include in-depth, interpretive analyses of results from a number of research groups. In the interpretive analysis, the emphasis is placed on the relevance and usefulness of the investigative results drawn from other research publications. The results of this study contribute to research on laser–arc hybrid welding by increasing understanding of how old and new perspectives on laser–arc hybrid welding are evidenced in industry. The research methodology applied permits continued exploration of how laser–arc hybrid welding and various process factors influence the overall quality of the weld. Thestudy provides a good foundation for future research, creates improved awareness of the laser–arc hybrid welding process, and assists the metal industry to maximize welding productivity.
Resumo:
Ruostumattomien terästen hinta on kasvanut maailman laajuisen kysynnän kasvun seurauksena. Samoin on käynyt myös ruostumattomien terästen valmistukseen käytettävien seosaineiden hinnalle. Terästen valmistajat ovatkin kehittäneet lean duplex teräksiä vastatakseen hintatietoisten markkinoiden kysyntään. Näissä lean duplex teräksissä kalliita seosaineita kuten nikkeliä ja molybdeenia on korvattu typellä ja mangaanilla. Houkutteleviksi vaihtoehdoiksi perinteisille ruostumattomille teräksille lean duplex laadut tekee myös niiden hyvät lujuus- ja korroosio-ominaisuudet. Kirjallisuus osio esittelee lasereiden toimintaperiaatteen. Myös avaimenreikähitsauksen periaate on esitetty. Ruostumattomien terästen yleisimmät seosaineet ovat esitelty, kuten myös syy niiden seostamiseen. Ruostumattomat duplex-teräkset on esitelty samoin kuin lean duplex teräkset. Kokeellisen osion koehitsit hitsattiin osin samalla tuotantolinjalla lopputuotteen kanssa ja osin laboratoriossa. Koemateriaaleina olivat lean duplex teräkset 1.4162 ja 1.4362 joiden materiaalipaksuudet olivat 1.2 mm ja 1.5 mm. Hitsatuille lamelleille tehtiin painetestaus. Makroskopiaa ja valomikroskopiaa käytettiin koehitsien arvioinnissa kuten myös ristivetokoetta. Kiinnostavimmista hitseistä määritettiin myös faasisuhde. Lean duplex teräs 1.4362 havaittiin sopivammaksi laaduksi tämän kaltaisessa sovelluksessa, mutta myös laatu 1.4162 täyttää sovelluksen hitsille asetetut vaatimukset, tosin huomattavasti pienemmässä parametri ikkunassa. Valittu menetelmä faasisuhteen määrittämiseen osoittautui epätarkaksi, joten faasisuhteen osalta tämän tutkimuksen tulokset ovat vain suuntaa-antavia.
Resumo:
Efficient production and consumption of energy has become the top priority of national and international policies around the world. Manufacturing industries have to address the requirements of the government in relation to energy saving and ecologically sustainable products. These industries are also concerned with energy and material usage due to their rising costs. Therefore industries have to find solutions that can support environmental preservation yet maintain competitiveness in the market. Welding, a major manufacturing process, consumes a great deal of material and energy. It is a crucial process in improving a product’s life-cycle cost, strength, quality and reliability. Factors which lead to weld related inefficiencies have to be effectively managed, if industries are to meet their quality requirements and fulfil a high-volume production demand. Therefore it is important to consider some practical strategies in welding process for optimization of energy and material consumption. The main objective of this thesis is to explore the methods of minimizing the ecological footprint of the welding process and methods to effectively manage its material and energy usage in the welding process. The author has performed a critical review of the factors including improved weld power source efficiency, efficient weld techniques, newly developed weld materials, intelligent welding systems, weld safety measures and personnel training. The study lends strong support to the fact that the use of eco-friendly welding units and the quality weld joints obtained with minimum possible consumption of energy and materials should be the main directions of improvement in welding systems. The study concludes that, gradually implementing the practical strategies mentioned in this thesis would help the manufacturing industries to achieve on the following - reduced power consumption, enhanced power control and manipulation, increased deposition rate, reduced cycle time, reduced joint preparation time, reduced heat affected zones, reduced repair rates, improved joint properties, reduced post-weld operations, improved automation, improved sensing and control, avoiding hazardous conditions and reduced exposure of welder to potential hazards. These improvement can help in promotion of welding as a green manufacturing process.