33 resultados para VARIABLE SAMPLING INTERVAL
Resumo:
Data transmission between an electric motor and a frequency converter is required in variablespeed electric drives because of sensors installed at the motor. Sensor information can be used for various useful applications to improve the system reliability and its properties. Traditionally, the communication medium is implemented by an additional cabling. However, the costs of the traditional method may be an obstacle to the wider application of data transmission between a motor and a frequency converter. In any case, a power cable is always installed between a motor and a frequency converter for power supply, and hence it may be applied as a communication medium for sensor level data. This thesis considers power line communication (PLC) in inverter-fed motor power cables. The motor cable is studied as a communication channel in the frequency band of 100 kHz−30 MHz. The communication channel and noise characteristics are described. All the individual components included in a variable-speed electric drive are presented in detail. A channel model is developed, and it is verified by measurements. A theoretical channel information capacity analysis is carried out to estimate the opportunities of a communication medium. Suitable communication and forward error correction (FEC) methods are suggested. A general method to implement a broadband and Ethernet-based communication medium between a motor and a frequency converter is proposed. A coupling interface is also developed that allows to install the communication device safely to a three-phase inverter-fed motor power cable. Practical tests are carried out, and the results are analyzed. Possible applications for the proposed method are presented. A speed feedback motor control application is verified in detail by simulations and laboratory tests because of restrictions for the delay in the feedback loop caused by PLC. Other possible applications are discussed at a more general level.
Resumo:
The main objective of this master’s thesis was to quantitatively study the reliability of market and sales forecasts of a certain company by measuring bias, precision and accuracy of these forecasts by comparing forecasts against actual values. Secondly, the differences of bias, precision and accuracy between markets were explained by various macroeconomic variables and market characteristics. Accuracy and precision of the forecasts seems to vary significantly depending on the market that is being forecasted, the variable that is being forecasted, the estimation period, the length of the estimated period, the forecast horizon and the granularity of the data. High inflation, low income level and high year-on-year market volatility seems to be related with higher annual market forecast uncertainty and high year-on-year sales volatility with higher sales forecast uncertainty. When quarterly market size is forecasted, correlation between macroeconomic variables and forecast errors reduces. Uncertainty of the sales forecasts cannot be explained with macroeconomic variables. Longer forecasts are more uncertain, shorter estimated period leads to higher uncertainty, and usually more recent market forecasts are less uncertain. Sales forecasts seem to be more uncertain than market forecasts, because they incorporate both market size and market share risks. When lead time is more than one year, forecast risk seems to grow as a function of root forecast horizon. When lead time is less than year, sequential error terms are typically correlated, and therefore forecast errors are trending or mean-reverting. The bias of forecasts seems to change in cycles, and therefore the future forecasts cannot be systematically adjusted with it. The MASE cannot be used to measure whether the forecast can anticipate year-on-year volatility. Instead, we constructed a new relative accuracy measure to cope with this particular situation.
Resumo:
The aim of this master´s thesis is to study which processes increase the auxiliary power consumption in carbon capture and storage processes and if it is possible to reduce the auxiliary power consumption with variable speed drives. Also the cost of carbon capture and storage is studied. Data about auxiliary power consumption in carbon capture is gathered from various studies and estimates made by various research centres. Based on these studies a view is presented how the power auxiliary power consumption is divided between different processes in carbon capture processes. In a literary study, the operation of three basic carbon capture systems is described. Also different methods to transport carbon dioxide and carbon dioxide storage options are described in this section. At the end of the thesis processes that consume most of the auxiliary power are defined and possibilities to reduce the auxiliary power consumption are evaluated. Cost of carbon capture, transport and storage are also evaluated at this point and in the case that the carbon capture and storage systems are fully deployed. According to the results, it can be estimated what are the processes are where variable speed drives can be used and what kind of cost and power consumption reduction could be achieved. Results also show how large a project carbon capture and storage is if it is fully deployed.
Resumo:
The main purpose of this thesis is to measure and evaluate how accurately the current energy saving calculation in ABB’s new variable speed drive ACS850 works. The main topic of this thesis is energy-efficiency parameters. At the beginning of this thesis centrifugal pump, squirrel cage motor and variable speed drive, including some equations related to them, are being introduced. Also methods of throttling control and variable speed drive control of centrifugal pumps are being introduced. These subjects are introduced because the energy saving calculation in ACS850 is related to the centrifugal pumps usually driven by squirrel cage motors. The theory also includes short section about specific energy of pumping. Before measurements the current energy saving calculation of ACS850 is being introduced and analyzed. The measurements part includes introduction of measuring equipment, measurement results, summary and analysis of the measurements. At the end of this thesis a proposal for an improvement to the current energy saving calculation is being introduced and few proposals are made for new energy-efficiency parameters, which could be added to variable speed drives. At the end are also thoughts
Resumo:
An oscillating overvoltage has become a common phenomenon at the motor terminal in inverter-fed variable-speed drives. The problem has emerged since modern insulated gate bipolar transistors have become the standard choice as the power switch component in lowvoltage frequency converter drives. Theovervoltage phenomenon is a consequence of the pulse shape of inverter output voltage and impedance mismatches between the inverter, motor cable, and motor. The overvoltages are harmful to the electric motor, and may cause, for instance, insulation failure in the motor. Several methods have been developed to mitigate the problem. However, most of them are based on filtering with lossy passive components, the drawbacks of which are typically their cost and size. In this doctoral dissertation, application of a new active du/dt filtering method based on a low-loss LC circuit and active control to eliminate the motor overvoltages is discussed. The main benefits of the method are the controllability of the output voltage du/dt within certain limits, considerably smaller inductances in the filter circuit resulting in a smaller physical component size, and excellent filtering performance when compared with typical traditional du/dt filtering solutions. Moreover, no additional components are required, since the active control of the filter circuit takes place in the process of the upper-level PWM modulation using the same power switches as the inverter output stage. Further, the active du/dt method will benefit from the development of semiconductor power switch modules, as new technologies and materials emerge, because the method requires additional switching in the output stage of the inverter and generation of narrow voltage pulses. Since additional switching is required in the output stage, additional losses are generated in the inverter as a result of the application of the method. Considerations on the application of the active du/dt filtering method in electric drives are presented together with experimental data in order to verify the potential of the method.
Resumo:
Selective papers of the workshop on "Development of models and forest soil surveys for monitoring of soil carbon", Koli, Finland, April 5-9 2006.
Resumo:
The present manuscript represents the completion of a research path carried forward during my doctoral studies in the University of Turku. It contains information regarding my scientific contribution to the field of open quantum systems, accomplished in collaboration with other scientists. The main subject investigated in the thesis is the non-Markovian dynamics of open quantum systems with focus on continuous variable quantum channels, e.g. quantum Brownian motion models. Non-Markovianity is here interpreted as a manifestation of the existence of a flow of information exchanged by the system and environment during the dynamical evolution. While in Markovian systems the flow is unidirectional, i.e. from the system to the environment, in non-Markovian systems there are time windows in which the flow is reversed and the quantum state of the system may regain coherence and correlations previously lost. Signatures of a non-Markovian behavior have been studied in connection with the dynamics of quantum correlations like entanglement or quantum discord. Moreover, in the attempt to recognisee non-Markovianity as a resource for quantum technologies, it is proposed, for the first time, to consider its effects in practical quantum key distribution protocols. It has been proven that security of coherent state protocols can be enhanced using non-Markovian properties of the transmission channels. The thesis is divided in two parts: in the first part I introduce the reader to the world of continuous variable open quantum systems and non-Markovian dynamics. The second part instead consists of a collection of five publications inherent to the topic.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
Julkaisumaa: 158 TW TWN Taiwan
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Kirjallisuusarvostelu