22 resultados para Universal Series
Resumo:
Chaotic behaviour is one of the hardest problems that can happen in nonlinear dynamical systems with severe nonlinearities. It makes the system's responses unpredictable. It makes the system's responses to behave similar to noise. In some applications it should be avoided. One of the approaches to detect the chaotic behaviour is nding the Lyapunov exponent through examining the dynamical equation of the system. It needs a model of the system. The goal of this study is the diagnosis of chaotic behaviour by just exploring the data (signal) without using any dynamical model of the system. In this work two methods are tested on the time series data collected from AMB (Active Magnetic Bearing) system sensors. The rst method is used to nd the largest Lyapunov exponent by Rosenstein method. The second method is a 0-1 test for identifying chaotic behaviour. These two methods are used to detect if the data is chaotic. By using Rosenstein method it is needed to nd the minimum embedding dimension. To nd the minimum embedding dimension Cao method is used. Cao method does not give just the minimum embedding dimension, it also gives the order of the nonlinear dynamical equation of the system and also it shows how the system's signals are corrupted with noise. At the end of this research a test called runs test is introduced to show that the data is not excessively noisy.
Resumo:
After introducing the no-cloning theorem and the most common forms of approximate quantum cloning, universal quantum cloning is considered in detail. The connections it has with universal NOT-gate, quantum cryptography and state estimation are presented and briefly discussed. The state estimation connection is used to show that the amount of extractable classical information and total Bloch vector length are conserved in universal quantum cloning. The 1 2 qubit cloner is also shown to obey a complementarity relation between local and nonlocal information. These are interpreted to be a consequence of the conservation of total information in cloning. Finally, the performance of the 1 M cloning network discovered by Bužek, Hillery and Knight is studied in the presence of decoherence using the Barenco et al. approach where random phase fluctuations are attached to 2-qubit gates. The expression for average fidelity is calculated for three cases and it is found to depend on the optimal fidelity and the average of the phase fluctuations in a specific way. It is conjectured to be the form of the average fidelity in the general case. While the cloning network is found to be rather robust, it is nevertheless argued that the scalability of the quantum network implementation is poor by studying the effect of decoherence during the preparation of the initial state of the cloning machine in the 1 ! 2 case and observing that the loss in average fidelity can be large. This affirms the result by Maruyama and Knight, who reached the same conclusion in a slightly different manner.
Resumo:
Finansanalytiker har en stor betydelse för finansmarknaderna, speciellt igenom att förmedla information genom resultatprognoser. Typiskt är att analytiker i viss grad är oeniga i sina resultatprognoser, och det är just denna oenighet analytiker emellan som denna avhandling studerar. Då ett företag rapporterar förluster tenderar oenigheten gällande ett företags framtid att öka. På ett intuitivt plan är det lätt att tolka detta som ökad osäkerhet. Det är även detta man finner då man studerar analytikerrapporter - analytiker ser ut att bli mer osäkra då företag börjar gå med förlust, och det är precis då som även oenigheten mellan analytikerna ökar. De matematisk-teoretiska modeller som beskriver analytikers beslutsprocesser har däremot en motsatt konsekvens - en ökad oenighet analytiker emellan kan endast uppkomma ifall analytikerna blir säkrare på ett individuellt plan, där den drivande kraften är asymmetrisk information. Denna avhandling löser motsägelsen mellan ökad säkerhet/osäkerhet som drivkraft bakom spridningen i analytikerprognoser. Genom att beakta mängden publik information som blir tillgänglig via resultatrapporter är det inte möjligt för modellerna för analytikers beslutsprocesser att ge upphov till de nivåer av prognosspridning som kan observeras i data. Slutsatsen blir därmed att de underliggande teoretiska modellerna för prognosspridning är delvis bristande och att spridning i prognoser istället mer troligt följer av en ökad osäkerhet bland analytikerna, i enlighet med vad analytiker de facto nämner i sina rapporter. Resultaten är viktiga eftersom en förståelse av osäkerhet runt t.ex. resultatrapportering bidrar till en allmän förståelse för resultatrapporteringsmiljön som i sin tur är av ytterst stor betydelse för prisbildning på finansmarknader. Vidare används typiskt ökad prognosspridning som en indikation på ökad informationsasymmetri i redovisningsforskning, ett fenomen som denna avhandling därmed ifrågasätter.
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
This project aims to design and manufacture a mobile robot with two Universal Robot UR10 mainly used indoors. In order to obtain omni-directional maneuverability, the mobile robot is constructed with Mecanum wheels. The Mecanum wheel can move in any direction with a series of rollers attached to itself. These rollers are angled at 45º about the hub’s circumference. This type of wheels can be used in both driving and steering with their any-direction property. This paper is focused on the design of traction system and suspension system, and the velocity control of Mecanum wheels in the close-loop control system. The mechanical design includes selection of bearing housing, couplers which are act as connection between shafts, motor parts, and other needed components. The 3D design software SolidWorks is utilized to assemble all the components in order to get correct tolerance. The driving shaft is designed based on assembled structure via the software as well. The design of suspension system is to compensate the assembly error of Mecanum wheels to guarantee the stability of the robot. The control system of motor drivers is realized through the Robot Operating System (ROS) on Ubuntu Linux. The purpose of inverse kinematics is to obtain the relationship among the movements of all Mecanum wheels. Via programming and interacting with the computer, the robot could move with required speed and direction.