20 resultados para Tungsten ores
Resumo:
Ore sorting after crushing is an effective way to enhance the feed quality of a concentrator. Sorting by hand is the oldest way of concentrating minerals but it has become outdated because of low capacities. Older methods of sorting have also been difficult to use in large scale productions due to low capacities of sorters. Data transfer and processing and the speed of rejection mechanisms have been the bottlenecks for effective use of sorters. A fictive chalcopyrite ore body was created for this thesis. The properties of the ore were typical of chalcopyrite ores and economical limit was set for design. Concentrator capacity was determined by the size of ore body and the planned mine life. Two concentrator scenarios were compared, one with the sorting facility and the other without sorting. Comparison was made for quality and amount of feed, size of equipment and economics. Concentrator with sorting had lower investment and operational cost but also lower incomes due to the ore loss in sorting. Net cash flow, net present value and internal rate of interest were calculated for comparison of the two scenarios.
Resumo:
Investigation of high pressure pretreatment process for gold leaching is the objective of the present master's thesis. The gold ores and concentrates which cannot be easily treated by leaching process are called "refractory". These types of ores or concentrates often have high content of sulfur and arsenic that renders the precious metal inaccessible to the leaching agents. Since the refractory ores in gold manufacturing industry take a considerable share, the pressure oxidation method (autoclave method) is considered as one of the possible ways to overcome the related problems. Mathematical modeling is the main approach in this thesis which was used for investigation of high pressure oxidation process. For this task, available information from literature concerning this phenomenon, including chemistry, mass transfer and kinetics, reaction conditions, applied apparatus and application, was collected and studied. The modeling part includes investigation of pyrite oxidation kinetics in order to create a descriptive mathematical model. The following major steps are completed: creation of process model by using the available knowledge; estimation of unknown parameters and determination of goodness of the fit; study of the reliability of the model and its parameters.
Resumo:
The need for industries to remain competitive in the welding business, has created necessity to develop innovative processes that can exceed customer’s demand. Significant development in improving weld efficiency, during the past decades, still have their drawbacks, specifically in the weld strength properties. The recent innovative technologies have created smallest possible solid material known as nanomaterial and their introduction in welding production has improved the weld strength properties and to overcome unstable microstructures in the weld. This study utilizes a qualitative research method, to elaborate the methods of introducing nanomaterial to the weldments and the characteristic of the welds produced by different welding processes. The study mainly focuses on changes in the microstructural formation and strength properties on the welded joint and also discusses those factors influencing such improvements, due to the addition of nanomaterials. The effect of nanomaterial addition in welding process modifies the physics of joining region, thereby, resulting in significant improvement in the strength properties, with stable microstructure in the weld. The addition of nanomaterials in the welding processes are, through coating on base metal, addition in filler metal and utilizing nanostructured base metal. However, due to its insignificant size, the addition of nanomaterials directly to the weld, would poses complications. The factors having major influence on the joint integrity are dispersion of nanomaterials, characteristics of the nanomaterials, quantity of nanomaterials and selection of nanomaterials. The addition of nanomaterials does not affect the fundamental properties and characteristics of base metals and the filler metal. However, in some cases, the addition of nanomaterials lead to the deterioration of the joint properties by unstable microstructural formations. Still research are ongoing to achieve high joint integrity, in various materials through different welding processes and also on other factors that influence the joint strength.
Resumo:
This study explores swords with ferrous inlays found in Finland and dating from the late Iron Age, ca. 700–1200 AD. These swords reflect profound changes not only in styles and fashion but also in the technology of hilts and blades. This study explores how many of these kinds of swords are known from Finland, how they were made and where, what their status was in Late Iron Age Finland, and where the Finnish finds stand in accordance with other areas of Europe. The various methods included measuring of the finds and statistics. The main method of revealing the inlaid marks was radiography due to its non-destructive nature. In cases where inlays were visible without radiography, their details were inspected via microscopy. To study the materials and manufacture of inlaid swords, a sample of them was metallographically analysed to determine the forging technologies and nature of used materials. Furthermore, the manufacture was also studied with experimental approaches. As a result, a catalogue of 151 swords with ferrous inlays was created. This number is relatively high compared with other European countries, although systematic studies have been conducted in only some countries. The inlaid motifs were classified into five distinct categories to help the classification. To summarize, almost every documented inlaid sword was unique in some respect including measurements, inlaid motifs and materials of blades and inlays. Technological variation was also present, some blades being poorer and some of higher quality in spite of the inlaid motifs. Misspelt inscriptions as well as letter-like marks were common in Finland and also in Scandinavia. Furthermore, the provenance of iron and steel used in some blades hints at Scandinavian ores. The above observations, along with the experimental results indicating the existence of multiple alternative techniques of inlaying, suggest that these swords were manufactured locally in Scandinavia, most likely in imitation of Continental European models. Inlaid swords were valued partly for their assumed functionality in combat, as evidenced by damage on some examined blades, or they were valued for their inlays, which could have had fashionable or symbolical meanings bound to local beliefs.
Resumo:
Työn tarkoituksena oli kuparin ja hapon erottaminen toisistaan malliaineliuoksesta membraanitekniikalla. Kaivannaisteollisuudessa happoja käytetään metalleiden liuottamiseen. Lisäksi happamia jätevesiä syntyy sulfidikaivoksissa, sadeveden liuottaessa metalleja. Raskasmetallit ovat erittäin myrkyllistä vesieliöille. Työn tavoitteena oli saada happo ja metalli hyödynnettävään muotoon. Työn kokeellisessa osassa vertailtiin kahta polymeeristä ja keraamista membraania hapon ja metallin erotuksessa. Mittauksissa käytetyt membraanit olivat: AMS Technologies A-3012 ja A-3014 sekä Inopor ® Type SKR. Syöttöliuos sisälsi kuparisulfaattia ja rikkihappoa. Suodatukset tehtiin 30 ºC lämpötilassa useissa paineissa ja pH-arvoissa. Polymeeristen membraanien suodatusnäytteistä saadut retentiot kuparille olivat vastaavia aikaisempien tutkimusten tuloksien kanssa. A-3012 kalvon kuparin retentio oli 95 % ja A-3014 kalvolle kuparin retentio oli 90 %. Lisäksi mittausten korkeimmissa pH-arvoissa (2,9-2,3) happo konsentroitui permeaattiin. Polymeerisillä membraaneilla ei ollut merkkejä kalvon likaantumisesta tai hajoamisesta. Keraamisella membraanilla mitatut tulokset eivät olleet vastaavia aikaisempien tutkimusten tuloksien kanssa. Kuparin retentio olivat 2 ja 20 prosentin välillä, eikä liuoksen pH eronnut syötön ja permeaatin välillä. Tulosten perusteella molemmat tutkitut polymeeriset membraanit soveltuvat kuparin erottamiseen happamasta liuoksesta. Mittauksissa käytetty keraaminen membraani ei sovellu tähän tehtävään.