24 resultados para The didactic novel
Resumo:
It is necessary to use highly specialized robots in ITER (International Thermonuclear Experimental Reactor) both in the manufacturing and maintenance of the reactor due to a demanding environment. The sectors of the ITER vacuum vessel (VV) require more stringent tolerances than normally expected for the size of the structure involved. VV consists of nine sectors that are to be welded together. The vacuum vessel has a toroidal chamber structure. The task of the designed robot is to carry the welding apparatus along a path with a stringent tolerance during the assembly operation. In addition to the initial vacuum vessel assembly, after a limited running period, sectors need to be replaced for repair. Mechanisms with closed-loop kinematic chains are used in the design of robots in this work. One version is a purely parallel manipulator and another is a hybrid manipulator where the parallel and serial structures are combined. Traditional industrial robots that generally have the links actuated in series are inherently not very rigid and have poor dynamic performance in high speed and high dynamic loading conditions. Compared with open chain manipulators, parallel manipulators have high stiffness, high accuracy and a high force/torque capacity in a reduced workspace. Parallel manipulators have a mechanical architecture where all of the links are connected to the base and to the end-effector of the robot. The purpose of this thesis is to develop special parallel robots for the assembly, machining and repairing of the VV of the ITER. The process of the assembly and machining of the vacuum vessel needs a special robot. By studying the structure of the vacuum vessel, two novel parallel robots were designed and built; they have six and ten degrees of freedom driven by hydraulic cylinders and electrical servo motors. Kinematic models for the proposed robots were defined and two prototypes built. Experiments for machine cutting and laser welding with the 6-DOF robot were carried out. It was demonstrated that the parallel robots are capable of holding all necessary machining tools and welding end-effectors in all positions accurately and stably inside the vacuum vessel sector. The kinematic models appeared to be complex especially in the case of the 10-DOF robot because of its redundant structure. Multibody dynamics simulations were carried out, ensuring sufficient stiffness during the robot motion. The entire design and testing processes of the robots appeared to be complex tasks due to the high specialization of the manufacturing technology needed in the ITER reactor, while the results demonstrate the applicability of the proposed solutions quite well. The results offer not only devices but also a methodology for the assembly and repair of ITER by means of parallel robots.
Resumo:
Metastases are the major cause of cancer deaths. Tumor cell dissemination from the primary tumor utilizes dysregulated cellular adhesion and upregulated proteolytic degradation of the extracellular matrix for progeny formation in distant organs. Integrins are transmembrane adhesive receptors mediating cellcell and cellmatrix interactions that are crucial for regulating cell migration, invasion, proliferation, and survival. Consequently, increased integrin activity is associated with augmented migration and invasion capacity in several cancer types. Heterodimeric integrins consist of an alpha - and beta-subunit that are held together in a bent conformation when the receptor is inactive, but extension and separation of subdomains is observed during receptor activation. Either inside-out or outside-in activation of receptors is possible through the intracellular molecule binding to an integrin cytoplasmic domain or extracellular ligand association with an integrin ectodomain, respectively. Several regulatory binding partners have been characterized for integrin cytoplasmic beta-domains, but the regulators interacting with the cytoplasmic alpha-domains have remained elusive. In this study, we performed yeast two-hybrid screens to identify novel binding partners for the cytoplasmic integrin alpha-domains. Further examination of two plausible candidates revealed a significant coregulatory role of an integrin alpha-subunit for cellular signaling processes. T-cell protein tyrosine phosphatase (TCPTP) showed a specific interaction with the cytoplasmic tail of integrin alpha1. This association stimulated TCPTP phosphatase activity, leading to negative regulation of epidermal growth factor receptor (EGFR) signaling and diminished anchorage-independent growth. Another candidate, mammary-derived growth inhibitor (MDGI), exhibited binding to several different integrin cytoplasmic alpha-tails through a conserved GFFKR sequence. MDGI overexpression in breast cancer cells altered EGFR trafficking and caused a remarkable accumulation of EGFR in the cytoplasm. We further demonstrated in vivo that MDGI expression induced a novel form of anti-EGFR therapy resistance. Moreover, MDGI binding to α-tails retained integrin in an inactive conformation attenuating integrin-mediated adhesion, migration, and invasion. In agreement with these results, sustained MDGI expression in breast cancer patients correlated with an increased 10-year distant disease-free survival. Taken together, the integrin signaling network is far from a complete view and future work will doubtless broaden our understanding further.
Resumo:
The growth of breast cancer is regulated by hormones and growth factors. Recently, aberrant fibroblast growth factor (FGF) signalling has been strongly implicated in promoting the progression of breast cancer and is thought to have a role in the development of endocrine resistant disease. FGFs mediate their auto- and paracrine signals through binding to FGF receptors 1-4 (FGFR1-4) and their isoforms. Specific targets of FGFs in breast cancer cells and the differential role of FGFRs, however, are poorly described. FGF-8 is expressed at elevated levels in breast cancer, and it has been shown to act as an angiogenic, growth promoting factor in experimental models of breast cancer. Furthermore, it plays an important role in mediating androgen effects in prostate cancer and in some breast cancer cell lines. We aimed to study testosterone (Te) and FGF-8 regulated genes in Shionogi 115 (S115) breast cancer cells, characterise FGF-8 activated intracellular signalling pathways and clarify the role of FGFR1, -2 and -3 in these cells. Thrombospondin-1 (TSP-1), an endogenous inhibitor of angiogenesis, was recognised as a Te and FGF-8 regulated gene. Te repression of TSP-1 was androgen receptor (AR)-dependent. It required de novo protein synthesis, but it was independent of FGF-8 expression. FGF-8, in turn, downregulated TSP-1 transcription by activating the ERK and PI3K pathways, and the effect could be reversed by specific kinase inhibitors. Differential FGFR1-3 action was studied by silencing each receptor by shRNA expression in S115 cells. FGFR1 expression was a prerequisite for the growth of S115 tumours, whereas FGFR2 expression alone was not able to promote tumour growth. High FGFR1 expression led to a growth advantage that was associated with strong ERK activation, increased angiogenesis and reduced apoptosis, and all of these effects could be reversed by an FGFR inhibitor. Taken together, the results of this thesis show that FGF-8 and FGFRs contribute strongly to the regulation of the growth and angiogenesis of experimental breast cancer and support the evidence for FGF-FGFR signalling as one of the major players in breast cancers.
Resumo:
Background: Atherosclerosis begins in early life progressing from asymptomatic to symptomatic as we age. Although substantial progress has been made in identifying the determinants of atherosclerosis in middle to older age adults at increased cardiovascular risk, there is lack of data examining determinants and prediction of atherosclerosis in young adults. Aims: The current study was designed to investigate levels of cardiovascular risk factors in young adults, subclinical measures of atherosclerosis, and prediction of subclinical arterial changes with conventional risk factor measures and novel metabolic profiling of serum samples. Subjects and Methods: This thesis utilised data from the follow-ups performed in 2001 and 2007 in the Cardiovascular Risk in Young Finns study, a Finnish population-based prospective cohort study that examined 2,204 subjects who were aged 30-45 years in 2007. Subclinical atherosclerosis was studied using noninvasive ultrasound measurements of carotid intima-media thickness (IMT), carotid arterial distensibility (CDist) and brachial flow-mediated dilation (FMD). Measurements included conventional risk factors and metabolic profiling using highthroughput nuclear magnetic resonance (NMR) methods that provided data on 42 lipid markers and 16 circulating metabolites. Results: Trends in lipids were favourable between 2001 and 2007, whereas waist circumference, fasting glucose, and blood pressure levels increased. To study the stability of noninvasive ultrasound markers, 6-year tracking (the likelihood to maintain the original fractile over time) in 6 years was examined. IMT tracked more strongly than CDist and FMD. Cardiovascular risk scores (Framingham, SCORE, Finrisk, Reynolds and PROCAM) predicted subclinical atherosclerosis equally. Lipoprotein subclass testing did not improve the prediction of subclinical atherosclerosis over and above conventional risk factors. However, circulating metabolites improved risk stratification. Tyrosine and docosahexaenoic acid were found to be novel biomarkers of high IMT. Conclusions: Prediction of cardiovascular risk in young Finnish adults can be performed with any of the existing risk scores. The addition of metabonomics to risk stratification improves prediction of subclinical changes and enables more accurate targeting of prevention at an early stage.
Resumo:
In mammals, post-testicular sperm maturation taking place in the epididymis is required for the spermatozoa to acquire the abilities required to fertilize the egg in vivo. The epididymal epithelial cells secrete proteins and other small molecules into the lumen, where they interact with the spermatozoa and enable necessary maturational changes. In this study different in silico, in vitro and in vivo approaches were utilized in order to find novel genes responsible for the function of the epididymis and post-testicular sperm maturation in the mouse. Available online genomic databases were analyzed to identify genes potentially expressed in the epididymis, gene expression profiling was performed by studying their expression in different mouse tissues, and significance of certain genes to fertility was assessed by generating genetically modified mouse models. A recently discovered Pate (prostate and testis expression) gene family was found to be predominantly expressed in the epididymis. It represents one of the largest known gene families expressed in the epididymis, and the members code for proteins potentially involved in defense against microorganisms. Through genetically modified mouse models CRISP4 (cysteine-rich secretory protein 4) was identified to regulate sperm acrosome reaction, and BMYC to inhibit the expression of the Myc proto-oncogene in the developing testis. A mouse line expressing iCre recombinase specifically in the epididymis was also generated. This model can be used to generate conditional, epididymis-specific knock-out models, and will be a valuable tool in fertility studies.
The spindle assembly checkpoint as a drug target - Novel small-molecule inhibitors of Aurora kinases
Resumo:
Cell division (mitosis) is a fundamental process in the life cycle of a cell. Equal distribution of chromosomes between the daughter cells is essential for the viability and well-being of an organism: loss of fidelity of cell division is a contributing factor in human cancer and also gives rise to miscarriages and genetic birth defects. For maintaining the proper chromosome number, a cell must carefully monitor cell division in order to detect and correct mistakes before they are translated into chromosomal imbalance. For this purpose an evolutionarily conserved mechanism termed the spindle assembly checkpoint (SAC) has evolved. The SAC comprises a complex network of proteins that relay and amplify mitosis-regulating signals created by assemblages called kinetochores (KTs). Importantly, minor defects in SAC signaling can cause loss or gain of individual chromosomes (aneuploidy) which promotes tumorigenesis while complete failure of SAC results in cell death. The latter event has raised interest in discovery of low molecular weight (LMW) compounds targeting the SAC that could be developed into new anti-cancer therapeutics. In this study, we performed a cell-based, phenotypic high-throughput screen (HTS) to identify novel LMW compounds that inhibit SAC function and result in loss of cancer cell viability. Altogether, we screened 65 000 compounds and identified eight that forced the cells prematurely out of mitosis. The flavonoids fisetin and eupatorin, as well as the synthetic compounds termed SACi2 and SACi4, were characterized in more detail utilizing versatile cell-based and biochemical assays. To identify the molecular targets of these SAC-suppressing compounds, we investigated the conditions in which SAC activity became abrogated. Eupatorin, SACi2 and SACi4 preferentially abolished the tensionsensitive arm of the SAC, whereas fisetin lowered also the SAC activity evoked by lack of attachments between microtubules (MTs) and KTs. Consistent with the abrogation of SAC in response to low tension, our data indicate that all four compounds inhibited the activity of Aurora B kinase. This essential mitotic protein is required for correction of erratic MT-KT attachments, normal SAC signaling and execution of cytokinesis. Furthermore, eupatorin, SACi2 and SACi4 also inhibited Aurora A kinase that controls the centrosome maturation and separation and formation of the mitotic spindle apparatus. In line with the established profound mitotic roles of Aurora kinases, these small compounds perturbed SAC function, caused spindle abnormalities, such as multi- and monopolarity and fragmentation of centrosomes, and resulted in polyploidy due to defects in cytokinesis. Moreover, the compounds dramatically reduced viability of cancer cells. Taken together, using a cell-based HTS we were able to identify new LMW compounds targeting the SAC. We demonstrated for the first time a novel function for flavonoids as cellular inhibitors of Aurora kinases. Collectively, our data support the concept that loss of mitotic fidelity due to a non-functional SAC can reduce the viability of cancer cells, a phenomenon that may possess therapeutic value and fuel development of new anti-cancer drugs.
Resumo:
Atherosclerosis is a life-long vascular inflammatory disease and the leading cause of death in Finland and in other western societies. The development of atherosclerotic plaques is progressive and they form when lipids begin to accumulate in the vessel wall. This accumulation triggers the migration of inflammatory cells that is a hallmark of vascular inflammation. Often, this plaque will become unstable and form vulnerable plaque which may rupture causing thrombosis and in the worst case, causing myocardial infarction or stroke. Identification of these vulnerable plaques before they rupture could save lives. At present, in the clinic, there exists no appropriated, non-invasive method for their identification. The aim of this thesis was to evaluate novel positron emission tomography (PET) probes for the detection of vulnerable atherosclerotic plaques and to characterize, two mouse models of atherosclerosis. These studies were performed by using ex vivo and in vivo imaging modalities. The vulnerability of atherosclerotic plaques was evaluated as expression of active inflammatory cells, namely macrophages. Age and the duration of high-fat diet had a drastic impact on the development of atherosclerotic plaques in mice. In imaging of atherosclerosis, 6-month-old mice, kept on high-fat diet for 4 months, showed matured, metabolically active, atherosclerotic plaques. [18F]FDG and 68Ga were accumulated in the areas representative of vulnerable plaques. However, the slow clearance of 68Ga limits its use for the plaque imaging. The novel synthesized [68Ga]DOTA-RGD and [18F]EF5 tracers demonstrated efficient uptake in plaques as compared to the healthy vessel wall, but the pharmacokinetic properties of these tracers were not optimal in used models. In conclusion, these studies resulted in the identification of new strategies for the assessment of plaque stability and mouse models of atherosclerosis which could be used for plaque imaging. In the used probe panel, [18F]FDG was the best tracer for plaque imaging. However, further studies are warranted to clarify the applicability of [18F]EF5 and [68Ga]DOTA-RGD for imaging of atherosclerosis with other experimental models.
Resumo:
Microreactors have proven to be versatile tools for process intensification. Over recent decades, they have increasingly been used for product and process development in chemical industries. Enhanced heat and mass transfer in the reactors due to the extremely high surfacearea- to-volume ratio and interfacial area allow chemical processes to be operated at extreme conditions. Safety is improved by the small holdup volume of the reactors and effective control of pressure and temperature. Hydrogen peroxide is a powerful green oxidant that is used in a wide range of industries. Reduction and auto-oxidation of anthraquinones is currently the main process for hydrogen peroxide production. Direct synthesis is a green alternative and has potential for on-site production. However, there are two limitations: safety concerns because of the explosive gas mixture produced and low selectivity of the process. The aim of this thesis was to develop a process for direct synthesis of hydrogen peroxide utilizing microreactor technology. Experimental and numerical approaches were applied for development of the microreactor. Development of a novel microreactor was commenced by studying the hydrodynamics and mass transfer in prototype microreactor plates. The prototypes were designed and fabricated with the assistance of CFD modeling to optimize the shape and size of the microstructure. Empirical correlations for the mass transfer coefficient were derived. The pressure drop in micro T-mixers was investigated experimentally and numerically. Correlations describing the friction factor for different flow regimes were developed and predicted values were in good agreement with experimental results. Experimental studies were conducted to develop a highly active and selective catalyst with a proper form for the microreactor. Pd catalysts supported on activated carbon cloths were prepared by different treatments during the catalyst preparation. A variety of characterization methods were used for catalyst investigation. The surface chemistry of the support and the oxidation state of the metallic phase in the catalyst play important roles in catalyst activity and selectivity for the direct synthesis. The direct synthesis of hydrogen peroxide was investigated in a bench-scale continuous process using the novel microreactor developed. The microreactor was fabricated based on the hydrodynamic and mass transfer studies and provided a high interfacial area and high mass transfer coefficient. The catalysts were prepared under optimum treatment conditions. The direct synthesis was conducted at various conditions. The thesis represents a step towards a commercially viable direct synthesis. The focus is on the two main challenges: mitigating the safety problem by utilization of microprocess technology and improving the selectivity by catalyst development.