21 resultados para Techniques: images processing
Resumo:
The thesis is related to the topic of image-based characterization of fibers in pulp suspension during the papermaking process. Papermaking industry is focusing on process control optimization and automatization, which makes it possible to manufacture highquality products in a resource-efficient way. Being a part of the process control, pulp suspension analysis allows to predict and modify properties of the end product. This work is a part of the tree species identification task and focuses on analysis of fiber parameters in the pulp suspension at the wet stage of paper production. The existing machine vision methods for pulp characterization were investigated, and a method exploiting direction sensitive filtering, non-maximum suppression, hysteresis thresholding, tensor voting, and curve extraction from tensor maps was developed. Application of the method to the microscopic grayscale pulp images made it possible to detect curves corresponding to fibers in the pulp image and to compute their morphological characteristics. Performance of the method was evaluated based on the manually produced ground truth data. An accuracy of fiber characteristics estimation, including length, width, and curvature, for the acacia pulp images was found to be 84, 85, and 60% correspondingly.
Resumo:
The papermaking industry has been continuously developing intelligent solutions to characterize the raw materials it uses, to control the manufacturing process in a robust way, and to guarantee the desired quality of the end product. Based on the much improved imaging techniques and image-based analysis methods, it has become possible to look inside the manufacturing pipeline and propose more effective alternatives to human expertise. This study is focused on the development of image analyses methods for the pulping process of papermaking. Pulping starts with wood disintegration and forming the fiber suspension that is subsequently bleached, mixed with additives and chemicals, and finally dried and shipped to the papermaking mills. At each stage of the process it is important to analyze the properties of the raw material to guarantee the product quality. In order to evaluate properties of fibers, the main component of the pulp suspension, a framework for fiber characterization based on microscopic images is proposed in this thesis as the first contribution. The framework allows computation of fiber length and curl index correlating well with the ground truth values. The bubble detection method, the second contribution, was developed in order to estimate the gas volume at the delignification stage of the pulping process based on high-resolution in-line imaging. The gas volume was estimated accurately and the solution enabled just-in-time process termination whereas the accurate estimation of bubble size categories still remained challenging. As the third contribution of the study, optical flow computation was studied and the methods were successfully applied to pulp flow velocity estimation based on double-exposed images. Finally, a framework for classifying dirt particles in dried pulp sheets, including the semisynthetic ground truth generation, feature selection, and performance comparison of the state-of-the-art classification techniques, was proposed as the fourth contribution. The framework was successfully tested on the semisynthetic and real-world pulp sheet images. These four contributions assist in developing an integrated factory-level vision-based process control.
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.
Resumo:
Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
The increased awareness and evolved consumer habits have set more demanding standards for the quality and safety control of food products. The production of foodstuffs which fulfill these standards can be hampered by different low-molecular weight contaminants. Such compounds can consist of, for example residues of antibiotics in animal use or mycotoxins. The extremely small size of the compounds has hindered the development of analytical methods suitable for routine use, and the methods currently in use require expensive instrumentation and qualified personnel to operate them. There is a need for new, cost-efficient and simple assay concepts which can be used for field testing and are capable of processing large sample quantities rapidly. Immunoassays have been considered as the golden standard for such rapid on-site screening methods. The introduction of directed antibody engineering and in vitro display technologies has facilitated the development of novel antibody based methods for the detection of low-molecular weight food contaminants. The primary aim of this study was to generate and engineer antibodies against low-molecular weight compounds found in various foodstuffs. The three antigen groups selected as targets of antibody development cause food safety and quality defects in wide range of products: 1) fluoroquinolones: a family of synthetic broad-spectrum antibacterial drugs used to treat wide range of human and animal infections, 2) deoxynivalenol: type B trichothecene mycotoxin, a widely recognized problem for crops and animal feeds globally, and 3) skatole, or 3-methyindole is one of the two compounds responsible for boar taint, found in the meat of monogastric animals. This study describes the generation and engineering of antibodies with versatile binding properties against low-molecular weight food contaminants, and the consecutive development of immunoassays for the detection of the respective compounds.
Resumo:
While red-green-blue (RGB) image of retina has quite limited information, retinal multispectral images provide both spatial and spectral information which could enhance the capability of exploring the eye-related problems in their early stages. In this thesis, two learning-based algorithms for reconstructing of spectral retinal images from the RGB images are developed by a two-step manner. First, related previous techniques are reviewed and studied. Then, the most suitable methods are enhanced and combined to have new algorithms for the reconstruction of spectral retinal images. The proposed approaches are based on radial basis function network to learn a mapping from tristimulus colour space to multi-spectral space. The resemblance level of reproduced spectral images and original images is estimated using spectral distance metrics spectral angle mapper, spectral correlation mapper, and spectral information divergence, which show a promising result from the suggested algorithms.