18 resultados para Teaching methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study focuses on primary school teachers’ perceptions of environmental education, its integration into primary school education and teachers’ teaching practices in Tanzania. The thesis is based on empirical research. The theoretical underpinnings of the study are based on Palmer’s (1998) model of environmental education. According to the model, meaningful environmental education should include education about, in or through and for the environment. The study is supported by national and international literature from research done on environmental education and education for sustainable development and policy statements. The study is qualitative in nature, adopting phenomenography and phenomenology as points of departure. The empirical data was collected from four primary schools in Morogoro region in Tanzania. The study sample consisted of 31 primary school teachers. Data was collected through interviews and lesson observations. According to the results of the study, primary school teachers expressed variations in their perceptions of environmental education and education for sustainable development. Most of the teachers focused on the aspect of knowledge acquisition. According to Tanzanian education and training policy, environmental education has to be integrated into all subjects. Although there is environmental education in the primary school curriculum, it is not integrated on an equal footing in all subjects. Some subjects like science, social studies and geography have more environmental content than other subjects. Teachers claim that the approach used to integrate environmental education into the school curriculum was not favoured because many claimed that what is to be taught as environmental education in the various subjects is not shown clearly. As a result, many teachers suggested that to ensure that it is taught properly it should be included in the curriculum as an independent subject or as specific topics. The study revealed that teachers’ teaching practices in integrating environmental education varied from one subject to another. Although most of the teachers said that they used participatory methods, lesson observations showed that they limited themselves to question and answer and group discussion. However, the teachers faced a number of barriers in the teaching of environmental education, some of which include lack of teaching and learning resources, time and large class size. The role of teachers in the implementation of environmental education in developing an environmentally literate citizenry is of great significance. The responsibility of the government in developing a curriculum with clear goals and content, developing teachers’ capacity in the teaching of environmental education and provision of teaching and learning materials needs to be taken seriously by the government in educational plans and programs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This book is dedicated to celebrate the 60th birthday of Professor Rainer Huopalahti. Professor Rainer “Repe” Huopalahti has had, and in fact is still enjoying a distinguished career in the analysis of food and food related flavor compounds. One will find it hard to make any progress in this particular field without a valid and innovative sample handling technique and this is a field in which Professor Huopalahti has made great contributions. The title and the front cover of this book honors Professor Huopahti’s early steps in science. His PhD thesis which was published on 1985 is entitled “Composition and content of aroma compounds in the dill herb, Anethum graveolens L., affected by different factors”. At that time, the thesis introduced new technology being applied to sample handling and analysis of flavoring compounds of dill. Sample handling is an essential task that in just about every analysis. If one is working with minor compounds in a sample or trying to detect trace levels of the analytes, one of the aims of sample handling may be to increase the sensitivity of the analytical method. On the other hand, if one is working with a challenging matrix such as the kind found in biological samples, one of the aims is to increase the selectivity. However, quite often the aim is to increase both the selectivity and the sensitivity. This book provides good and representative examples about the necessity of valid sample handling and the role of the sample handling in the analytical method. The contributors of the book are leading Finnish scientists on the field of organic instrumental analytical chemistry. Some of them are also Repe’ s personal friends and former students from the University of Turku, Department of Biochemistry and Food Chemistry. Importantly, the authors all know Repe in one way or another and are well aware of his achievements on the field of analytical chemistry. The editorial team had a great time during the planning phase and during the “hard work editorial phase” of the book. For example, we came up with many ideas on how to publish the book. After many long discussions, we decided to have a limited edition as an “old school hard cover book” – and to acknowledge more modern ways of disseminating knowledge by publishing an internet version of the book on the webpages of the University of Turku. Downloading the book from the webpage for personal use is free of charge. We believe and hope that the book will be read with great interest by scientists working in the fascinating field of organic instrumental analytical chemistry. We decided to publish our book in English for two main reasons. First, we believe that in the near future, more and more teaching in Finnish Universities will be delivered in English. To facilitate this process and encourage students to develop good language skills, it was decided to be published the book in English. Secondly, we believe that the book will also interest scientists outside Finland – particularly in the other member states of the European Union. The editorial team thanks all the authors for their willingness to contribute to this book – and to adhere to the very strict schedule. We also want to thank the various individuals and enterprises who financially supported the book project. Without that support, it would not have been possible to publish the hardcover book.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.