32 resultados para Stress Fibres
Resumo:
In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.
Resumo:
Den viktigaste råvaran i papperstillverkning är pappersmassa. Massan innehåller (ved)fibrer men också finmaterial och andra typers (ved)celler, så som kärlceller. Hur dessa komponenter beter sig under arkformationen i pappersmaskinen eller hur de bidrar till egenskaperna hos det färdiga pappret avgörs till stor del av massakomponenternas ytkemiska sammansättning, fysiska struktur och mängden joniserbara grupper på ytan. I denna avhandling studerades ytegenskaperna hos fraktionerade kemiska massor och returfibermassor med avancerade analystekniker. Rester av avfärgningskemikalier identifierades på både returfibrer och på kärlceller. Dessa kan påverka arkformationen och arkstyrkan på returfiberpapper. Kärlcellernas cellväggsstruktur visade sig skilja sig från fibrernas. Resultaten kan främja utvecklingen av returfiberprosessen och användningen av kärlcellsrika lövvedsmassor.
Resumo:
The fatigue failure of structures under fluctuating loads in fillet weld joints raises a demand to determine the parameters related to this type of loading. In this study, the stress distribution in the susceptible area of weld toe and weld root in fillet welded models analyzed by finite element method applying FEMAP software. To avoid the geometrical singularity on the path of analytical stress analysis in the toe and root area of a weld model the effective notch stress approach applied by which a proper fictitious rounding that mostly depend on the material of structure is applied. The models with different weld toe waving width and radius are analyzed while the flank angle of weld varied in 45 and 30 degrees. The processed results shows that the waving compare to the straight weld toe makes differences in the value of stress and consequently the stress concentration factor between the tip and depth of the waves in the weld toe which helps to protect the crack of propagation and gives enough time and tools to be informed of the crack initiation in the structure during the periodical observation of structure. In the weld root study the analyses among the models with the welding penetration percentage from non-penetration to the full-penetration shows a slightly increase in the root area stress value which comparing with the stiffening effect of penetration conclude that the half-penetration can make an optimization between the stress increase and stiffening effect of deep penetration.
Resumo:
The Roll-to-Roll process makes it possible to print electronic products continuously onto a uniform substrate. Printing components on flexible surfaces can bring down the costs of simple electronic devices such as RFID tags, antennas and transistors. The possibility of quickly printing flexible electronic components opens up a wide array of novel products previously too expensive to produce on a large scale. Several different printing methods can be used in Roll-to-Roll printing, such as gravure, spray, offset, flexographic and others. Most of the methods can also be mixed in one production line. Most of them still require years of research to reach a significant commercial level. The research for this thesis was carried out at the Konkuk University Flexible Display Research Center (KU-FDRC) in Seoul, Korea. A system using Roll-to-Roll printing requires that the motion of the web can be controlled in every direction in order to align different layers of ink properly. Between printers the ink is dried with hot air. The effects of thermal expansion on the tension of the web are studied in this work, and a mathematical model was constructed on Matlab and Simulink. Simulations and experiments lead to the conclusion that the thermal expansion of the web has a great influence on the tension of the web. Also, experimental evidence was gained that the particular printing machine used for these experiments at KU-FDRC may have a problem in controlling the speeds of the cylinders which pull the web.
Resumo:
Modern machine structures are often fabricated by welding. From a fatigue point of view, the structural details and especially, the welded details are the most prone to fatigue damage and failure. Design against fatigue requires information on the fatigue resistance of a structure’s critical details and the stress loads that act on each detail. Even though, dynamic simulation of flexible bodies is already current method for analyzing structures, obtaining the stress history of a structural detail during dynamic simulation is a challenging task; especially when the detail has a complex geometry. In particular, analyzing the stress history of every structural detail within a single finite element model can be overwhelming since the amount of nodal degrees of freedom needed in the model may require an impractical amount of computational effort. The purpose of computer simulation is to reduce amount of prototypes and speed up the product development process. Also, to take operator influence into account, real time models, i.e. simplified and computationally efficient models are required. This in turn, requires stress computation to be efficient if it will be performed during dynamic simulation. The research looks back at the theoretical background of multibody dynamic simulation and finite element method to find suitable parts to form a new approach for efficient stress calculation. This study proposes that, the problem of stress calculation during dynamic simulation can be greatly simplified by using a combination of floating frame of reference formulation with modal superposition and a sub-modeling approach. In practice, the proposed approach can be used to efficiently generate the relevant fatigue assessment stress history for a structural detail during or after dynamic simulation. In this work numerical examples are presented to demonstrate the proposed approach in practice. The results show that approach is applicable and can be used as proposed.
Resumo:
Stressignaler avkänns många gånger av membranbundna proteiner som översätter signalerna till kemisk modifiering av molekyler, ofta proteinkinaser Dessa kinaser överför de avkodade budskapen till specifika transkriptionsfaktorer genom en kaskad av sekventiella fosforyleringshändelser, transkriptionsfaktorerna aktiverar i sin tur de gener som behövs för att reagera på stressen. En av de mest kända måltavlorna för stressignaler är transkriptionsfaktor AP-1 familjemedlemen c-Jun. I denna studie har jag identifierat den nukleolära proteinet AATF som en ny regulator av c-Jun-medierad transkriptionsaktivitet. Jag visar att stresstimuli inducerar omlokalisering av AATF vilket i sin tur leder till aktivering av c-Jun. Den AATF-medierad ökningen av c-Jun-aktiviteten leder till en betydande ökning av programmerad celldöd. Parallellt har jag vidarekarakteriserat Cdk5/p35 signaleringskomplexet som tidigare har identifierats i vårt laboratorium som en viktig faktor för myoblastdifferentiering. Jag identifierade den atypiska PKCξ som en uppströms regulator av Cdk5/p35-komplexet och visar att klyvning och aktivering av Cdk5 regulatorn p35 är av fysiologisk betydelse för differentieringsprocessen och beroende av PKCξ aktivitet. Jag visar att vid induktion av differentiering fosforylerar PKCξ p35 vilket leder till calpain-medierad klyvning av p35 och därmed ökning av Cdk5-aktiviteten. Denna avhandling ökar förståelsen för de regulatoriska mekanismer som styr c-Jun-transkriptionsaktiviteten och c-Jun beroende apoptos genom att identifiera AATF som en viktig faktor. Dessutom ger detta arbete nya insikter om funktionen av Cdk5/p35-komplexet under myoblastdifferentiering och identifierar PKCξ som en uppströms regulator av Cdk5 aktivitet och myoblast differentiering.
Resumo:
I studied the associations between migration-related physiological regulation (corticosterone) and body condition of barn swallows (Hirundo rustica L.). An additional purpose was to determine whether oxidative stress and biotransformation activity vary seasonally. Since physiological regulation, biotransformation activity and the stress involved may be important factors for body condition during migration; they may have direct effects on migration success. This in turn may influence other important life history stages, such as breeding and moult. In the thesis I used barn swallow data of the Finnish Ringing Centre (1997–2009), consisting of all juveniles ringed in the nests and recaptured from night roosts later the same autumn. Before the autumn migration in Finland I also captured, ringed and sampled barn swallows from night roosts in 2003, 2006, 2007 and 2011. Samples preceding spring migration in South Africa were collected in 2007. Juvenile barn swallows started to migrate southward in mid-August (first broods). Second broods started their migration at a younger age and almost a month later than first broods (mid-September). Barn swallows increased body mass and accumulated fat for the autumn migration. In the course of the autumn they seemed to be able to prevent the loss of energy already accumulated, since the proportional overnight mass loss, fat loss and faecal production decreased. Surprisingly, corticosterone, the major energy-regulating hormone in birds, seemed not to be involved in the fuelling process. Previous studies with warblers, sparrows and shorebirds had shown that during migration, the baseline levels of corticosterone were elevated in order to facilitate fuelling. It is possible that for Finnish barn swallows the most important fuelling place is in southern Europe, since northern and eastern populations migrate via the Balkan Peninsula. However, the adrenocortical stress response of Finnish barn swallows in good body condition was lower than that of those in poor body condition. Birds clearly suppressed the response, probably to prevent the catabolic effects of excessive corticosterone levels; birds cannot afford to lose muscle mass before migration. South African barn swallows had high levels of baseline corticosterone, but this may have been associated with the high oxidative damage and biotransformation activity of those birds. Barn swallows in spring and summer had low biotransformation activity and intermediate oxidative stress, which was probably related to breeding. Autumn birds had low biotransformation activity and oxidative stress but high redox enzyme activities in some migration-related enzymes.
Resumo:
Heat shock factors (HSFs) are an evolutionarily well conserved family of transcription factors that coordinate stress-induced gene expression and direct versatile physiological processes in eukaryote organisms. The essentiality of HSFs for cellular homeostasis has been well demonstrated, mainly through HSF1-induced transcription of heat shock protein (HSP) genes. HSFs are important regulators of many fundamental processes such as gametogenesis, metabolic control and aging, and are involved in pathological conditions including cancer progression and neurodegenerative diseases. In each of the HSF-mediated processes, however, the detailed mechanisms of HSF family members and their complete set of target genes have remained unknown. Recently, rapid advances in chromatin studies have enabled genome-wide characterization of protein binding sites in a high resolution and in an unbiased manner. In this PhD thesis, these novel methods that base on chromatin immunoprecipitation (ChIP) are utilized and the genome-wide target loci for HSF1 and HSF2 are identified in cellular stress responses and in developmental processes. The thesis and its original publications characterize the individual and shared target genes of HSF1 and HSF2, describe HSF1 as a potent transactivator, and discover HSF2 as an epigenetic regulator that coordinates gene expression throughout the cell cycle progression. In male gametogenesis, novel physiological functions for HSF1 and HSF2 are revealed and HSFs are demonstrated to control the expression of X- and Y-chromosomal multicopy genes in a silenced chromatin environment. In stressed human cells, HSF1 and HSF2 are shown to coordinate the expression of a wide variety of genes including genes for chaperone machinery, ubiquitin, regulators of cell cycle progression and signaling. These results highlight the importance of cell type and cell cycle phase in transcriptional responses, reveal the myriad of processes that are adjusted in a stressed cell and describe novel mechanisms that maintain transcriptional memory in mitotic cell division.
Resumo:
Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.
Resumo:
All aerobic organisms have to deal with the toxicity of oxygen. Oxygen enables more efficient energy production compared to anaerobic respiration or fermentation, but at the same time reactive oxygen species (ROS) are being formed. ROS can also be produced by external factors such as UV-radiation and contamination. ROS can cause damage to biomolecules such as DNA, lipids and proteins and organisms try to keep the damage as small as possible by repairing biomolecules and metabolizing ROS. All ROS are not harmful, because they are used as signaling molecules. To cope against ROS organism have an antioxidant (AOX) system which consists both enzymatic and non-enzymatic AOX defense. Some AOX are produced by the organism itself and some are gained via diet. In this thesis I studied environmentally caused changes in the redox regulation of different wild vertebrate animals to gain knowledge on the temporal, spatial and pollution-derived-effects on the AOX systems. As study species I used barn swallow, ringed seal and the Baltic salmon. For the barn swallow the main interest was the seasonal fluctuation in the redox regulation and its connection to migration and breeding. The more contaminated ringed seals of the Baltic Sea were compared to seals from cleaner Svalbard to investigate whether they suffered from contaminant induced oxidative stress. The regional and temporal variation in redox regulation and regional variation in mRNA and protein expressions of Baltic salmon were studied to gain knowledge if the salmon from different areas are equally stressed. As a comparative aspect the redox responses of these different species were investigated to see which parts of the AOX system are substantial in which species. Certain parts of AOX system were connected to breeding and others to migration in barn swallows, there was also differences in biotransformation between birds caught from Africa and Finland. The Baltic ringed seal did not differ much from the seals from Svalbard, despite the difference in contaminant load. A possible explanation to this could be the enhanced AOX mechanisms against dive-associated oxidative stress in diving air-breathing animals, which also helps to cope with ROS derived from other sourses. The Baltic salmon from Gulf of Finland (GoF) showed higher activities in their AOX defense enzymes and more oxidative damage than fish from other areas. Also on mRNA and proteomic level, stress related metabolic changes were most profound in in the fish from GoF. Mainly my findings on species related differences followed the pattern of mammals showing highest activities and least damage and birds showing lower activities and most damage, fish being intermediate. In general, the glutathione recycling-related enzymes and the ratio of oxidized and reduced glutathione seemed to be the most affected parameters in all of the species.
Resumo:
Background: A positive association has been suggested to exist between physical activity and psychological wellbeing. However, the association between physical fitness, especially muscle fitness and psychological wellbeing, has not yet been fully elucidated. Aims: The objective of the present thesis was to assess the relationship between physical activity and physical fitness with stress symptoms, mental resources and workability among young men and working adults. Subjects and methods: Volunteers of young men (n=831, mean age 25-y (±4.0)), underwent a cardiorespiratory (CRF) and muscle fitness (MFI) test and completed leisure time physical activity (LTPA) and Occupational Stress Questionnaires (OSQ). The participants were divided into tertiles according to LTPA, CRF and MFI. A 12-month exercise intervention evaluated 371 working adults (exercise group, n=338, mean age 45-y (±8.8)); control group, n=33, mean age 41-y (±6.9)).The exercise group underwent a 12-month exercise program followed by a 12-month follow-up. The OSQ, Workability Index (WAI) and CRF were evaluated at baseline and at 4, 8, 12 and 24 months. Results: Physically inactive subjects reported more stress and less available mental resources than the subjects who reported high physical activity levels. Improved physical fitness was associated with less stress and more mental resources among normal weight men, but not in overweight men. After a 12-month exercise intervention, employees in the exercise group increased their physical activity, improved workability, decreased stress symptoms and improved their physical fitness and mental resources. After the follow-up year, workability and stress were improved compared to baseline. Conclusions: In this thesis, good physical fitness was associated with improved psychological wellbeing among young men and working adults.
Resumo:
The aim of this research was to develop a piping stress analysis guideline to be widely used in Neste Jacobs Oy’s domestic and foreign projects. The company’s former guideline to performing stress analysis was partial and lacked important features, which were to be fixed through this research. The development of the guideline was based on literature research and gathering of existing knowledge from the experts in piping engineering. Case study method was utilized by performing stress analysis on an existing project with help of the new guideline. Piping components, piping engineering in process industry, and piping stress analysis were studied in the theory section of this research. Also, the existing piping standards were studied and compared with one another. By utilizing the theory found in literature and the vast experience and know-how collected from the company’s employees, a new guideline for stress analysis was developed. The guideline would be widely used in various projects. The purpose of the guideline was to clarify certain issues such as which of the piping would have to be analyzed, how are different material values determined and how will the results be reported. As a result, an extensive and comprehensive guideline for stress analysis was created. The new guideline more clearly defines formerly unclear points and creates clear parameters to performing calculations. The guideline is meant to be used by both new and experienced analysts and with its aid, the calculation process was unified throughout the whole company’s organization. Case study was used to exhibit how the guideline is utilized in practice, and how it benefits the calculation process.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.