25 resultados para Stochastic Differential Equations, Parameter Estimation, Maximum Likelihood, Simulation, Moments
Resumo:
Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
The main objective of this thesis is to show that plate strips subjected to transverse line loads can be analysed by using the beam on elastic foundation (BEF) approach. It is shown that the elastic behaviour of both the centre line section of a semi infinite plate supported along two edges, and the free edge of a cantilever plate strip can be accurately predicted by calculations based on the two parameter BEF theory. The transverse bending stiffness of the plate strip forms the foundation. The foundation modulus is shown, mathematically and physically, to be the zero order term of the fourth order differential equation governing the behaviour of BEF, whereas the torsion rigidity of the plate acts like pre tension in the second order term. Direct equivalence is obtained for harmonic line loading by comparing the differential equations of Levy's method (a simply supported plate) with the BEF method. By equating the second and zero order terms of the semi infinite BEF model for each harmonic component, two parameters are obtained for a simply supported plate of width B: the characteristic length, 1/ λ, and the normalized sum, n, being the effect of axial loading and stiffening resulting from the torsion stiffness, nlin. This procedure gives the following result for the first mode when a uniaxial stress field was assumed (ν = 0): 1/λ = √2B/π and nlin = 1. For constant line loading, which is the superimposition of harmonic components, slightly differing foundation parameters are obtained when the maximum deflection and bending moment values of the theoretical plate, with v = 0, and BEF analysis solutions are equated: 1 /λ= 1.47B/π and nlin. = 0.59 for a simply supported plate; and 1/λ = 0.99B/π and nlin = 0.25 for a fixed plate. The BEF parameters of the plate strip with a free edge are determined based solely on finite element analysis (FEA) results: 1/λ = 1.29B/π and nlin. = 0.65, where B is the double width of the cantilever plate strip. The stress biaxial, v > 0, is shown not to affect the values of the BEF parameters significantly the result of the geometric nonlinearity caused by in plane, axial and biaxial loading is studied theoretically by comparing the differential equations of Levy's method with the BEF approach. The BEF model is generalised to take into account the elastic rotation stiffness of the longitudinal edges. Finally, formulae are presented that take into account the effect of Poisson's ratio, and geometric non linearity, on bending behaviour resulting from axial and transverse inplane loading. It is also shown that the BEF parameters of the semi infinite model are valid for linear elastic analysis of a plate strip of finite length. The BEF model was verified by applying it to the analysis of bending stresses caused by misalignments in a laboratory test panel. In summary, it can be concluded that the advantages of the BEF theory are that it is a simple tool, and that it is accurate enough for specific stress analysis of semi infinite and finite plate bending problems.
Resumo:
The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, twomechanisms whichmake the systemstiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation are proposed. Generally, in hydraulic power transmission systems the orifice flow is clearly in the turbulent area. The flow becomes laminar as the pressure drop over the orifice approaches zero only in rare situations. These are e.g. when a valve is closed, or an actuator is driven against an end stopper, or external force makes actuator to switch its direction during operation. This means that in terms of accuracy, the description of laminar flow is not necessary. But, unfortunately, when a purely turbulent description of the orifice is used, numerical problems occur when the pressure drop comes close to zero since the first derivative of flow with respect to the pressure drop approaches infinity when the pressure drop approaches zero. Furthermore, the second derivative becomes discontinuous, which causes numerical noise and an infinitely small integration step when a variable step integrator is used. A numerically efficient model for the orifice flow is proposed using a cubic spline function to describe the flow in the laminar and transition areas. Parameters for the cubic spline function are selected such that its first derivative is equal to the first derivative of the pure turbulent orifice flow model in the boundary condition. In the dynamic simulation of fluid power circuits, a tradeoff exists between accuracy and calculation speed. This investigation is made for the two-regime flow orifice model. Especially inside of many types of valves, as well as between them, there exist very small volumes. The integration of pressures in small fluid volumes causes numerical problems in fluid power circuit simulation. Particularly in realtime simulation, these numerical problems are a great weakness. The system stiffness approaches infinity as the fluid volume approaches zero. If fixed step explicit algorithms for solving ordinary differential equations (ODE) are used, the system stability would easily be lost when integrating pressures in small volumes. To solve the problem caused by small fluid volumes, a pseudo-dynamic solver is proposed. Instead of integration of the pressure in a small volume, the pressure is solved as a steady-state pressure created in a separate cascade loop by numerical integration. The hydraulic capacitance V/Be of the parts of the circuit whose pressures are solved by the pseudo-dynamic method should be orders of magnitude smaller than that of those partswhose pressures are integrated. The key advantage of this novel method is that the numerical problems caused by the small volumes are completely avoided. Also, the method is freely applicable regardless of the integration routine applied. The superiority of both above-mentioned methods is that they are suited for use together with the semi-empirical modelling method which necessarily does not require any geometrical data of the valves and actuators to be modelled. In this modelling method, most of the needed component information can be taken from the manufacturer’s nominal graphs. This thesis introduces the methods and shows several numerical examples to demonstrate how the proposed methods improve the dynamic simulation of various hydraulic circuits.
Resumo:
Mathematical models often contain parameters that need to be calibrated from measured data. The emergence of efficient Markov Chain Monte Carlo (MCMC) methods has made the Bayesian approach a standard tool in quantifying the uncertainty in the parameters. With MCMC, the parameter estimation problem can be solved in a fully statistical manner, and the whole distribution of the parameters can be explored, instead of obtaining point estimates and using, e.g., Gaussian approximations. In this thesis, MCMC methods are applied to parameter estimation problems in chemical reaction engineering, population ecology, and climate modeling. Motivated by the climate model experiments, the methods are developed further to make them more suitable for problems where the model is computationally intensive. After the parameters are estimated, one can start to use the model for various tasks. Two such tasks are studied in this thesis: optimal design of experiments, where the task is to design the next measurements so that the parameter uncertainty is minimized, and model-based optimization, where a model-based quantity, such as the product yield in a chemical reaction model, is optimized. In this thesis, novel ways to perform these tasks are developed, based on the output of MCMC parameter estimation. A separate topic is dynamical state estimation, where the task is to estimate the dynamically changing model state, instead of static parameters. For example, in numerical weather prediction, an estimate of the state of the atmosphere must constantly be updated based on the recently obtained measurements. In this thesis, a novel hybrid state estimation method is developed, which combines elements from deterministic and random sampling methods.
Resumo:
Työn tavoitteena oli toteuttaa simulointimalli, jolla pystytään tutkimaan kestomagnetoidun tahtikoneen aiheuttaman vääntömomenttivärähtelyn vaikutuksia sähkömoottoriin liitetyssä mekaniikassa. Tarkoitus oli lisäksi selvittää kuinka kyseinen simulointimalli voidaan toteuttaa nykyaikaisia simulointiohjelmia käyttäen. Saatujen simulointitulosten oikeellisuus varmistettiin tätä työtä varten rakennetulla verifiointilaitteistolla. Tutkittava rakenne koostui akselista, johon kiinnitettiin epäkeskotanko. Epäkeskotankoon kiinnitettiin massa, jonka sijaintia voitiin muunnella. Massan asemaa muuttamalla saatiin rakenteelle erilaisia ominaistaajuuksia. Epäkeskotanko mallinnettiin joustavana elementtimenetelmää apuna käyttäen. Mekaniikka mallinnettiin dynamiikan simulointiin tarkoitetussa ADAMS –ohjelmistossa, johon joustavana mallinnettu epäkeskotanko tuotiin ANSYS –elementtimenetelmäohjelmasta. Mekaniikan malli siirrettiin SIMULINK –ohjelmistoon, jossa mallinnettiin myös sähkökäyttö. SIMULINK –ohjelmassa mallinnettiin sähkökäyttö, joka kuvaa kestomagnetoitua tahtikonetta. Kestomagnetoidun tahtikoneen yhtälöt perustuvat lineaarisiin differentiaaliyhtälöihin, joihin hammasvääntömomentin vaikutus on lisätty häiriösignaalina. Sähkökäytön malli tuottaa vääntömomenttia, joka syötetään ADAMS –ohjelmistolla mallinnettuun mekaniikkaan. Mekaniikan mallista otetaan roottorin kulmakiihtyvyyden arvo takaisinkytkentänä sähkömoottorin malliin. Näin saadaan aikaiseksi yhdistetty simulointi, joka koostuu sähkötoimilaitekäytöstä ja mekaniikasta. Tulosten perusteella voidaan todeta, että sähkökäyttöjen ja mekaniikan yhdistetty simulointi on mahdollista toteuttaa valituilla menetelmillä. Simuloimalla saadut tulokset vastaavat hyvin mitattuja tuloksia.
Resumo:
Gasification of biomass is an efficient method process to produce liquid fuels, heat and electricity. It is interesting especially for the Nordic countries, where raw material for the processes is readily available. The thermal reactions of light hydrocarbons are a major challenge for industrial applications. At elevated temperatures, light hydrocarbons react spontaneously to form higher molecular weight compounds. In this thesis, this phenomenon was studied by literature survey, experimental work and modeling effort. The literature survey revealed that the change in tar composition is likely caused by the kinetic entropy. The role of the surface material is deemed to be an important factor in the reactivity of the system. The experimental results were in accordance with previous publications on the subject. The novelty of the experimental work lies in the used time interval for measurements combined with an industrially relevant temperature interval. The aspects which are covered in the modeling include screening of possible numerical approaches, testing of optimization methods and kinetic modelling. No significant numerical issues were observed, so the used calculation routines are adequate for the task. Evolutionary algorithms gave a better performance combined with better fit than the conventional iterative methods such as Simplex and Levenberg-Marquardt methods. Three models were fitted on experimental data. The LLNL model was used as a reference model to which two other models were compared. A compact model which included all the observed species was developed. The parameter estimation performed on that model gave slightly impaired fit to experimental data than LLNL model, but the difference was barely significant. The third tested model concentrated on the decomposition of hydrocarbons and included a theoretical description of the formation of carbon layer on the reactor walls. The fit to experimental data was extremely good. Based on the simulation results and literature findings, it is likely that the surface coverage of carbonaceous deposits is a major factor in thermal reactions.
Resumo:
Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.
Resumo:
Kalman filter is a recursive mathematical power tool that plays an increasingly vital role in innumerable fields of study. The filter has been put to service in a multitude of studies involving both time series modelling and financial time series modelling. Modelling time series data in Computational Market Dynamics (CMD) can be accomplished using the Jablonska-Capasso-Morale (JCM) model. Maximum likelihood approach has always been utilised to estimate the parameters of the JCM model. The purpose of this study is to discover if the Kalman filter can be effectively utilized in CMD. Ensemble Kalman filter (EnKF), with 50 ensemble members, applied to US sugar prices spanning the period of January, 1960 to February, 2012 was employed for this work. The real data and Kalman filter trajectories showed no significant discrepancies, hence indicating satisfactory performance of the technique. Since only US sugar prices were utilized, it would be interesting to discover the nature of results if other data sets are employed.
Resumo:
The two main objectives of Bayesian inference are to estimate parameters and states. In this thesis, we are interested in how this can be done in the framework of state-space models when there is a complete or partial lack of knowledge of the initial state of a continuous nonlinear dynamical system. In literature, similar problems have been referred to as diffuse initialization problems. This is achieved first by extending the previously developed diffuse initialization Kalman filtering techniques for discrete systems to continuous systems. The second objective is to estimate parameters using MCMC methods with a likelihood function obtained from the diffuse filtering. These methods are tried on the data collected from the 1995 Ebola outbreak in Kikwit, DRC in order to estimate the parameters of the system.